127 lines
4.7 KiB
Python
127 lines
4.7 KiB
Python
![]() |
import random
|
||
|
import time
|
||
|
import pyviennacl as vcl
|
||
|
|
||
|
from collections import OrderedDict as odict
|
||
|
|
||
|
def closest_divisor(N, x):
|
||
|
x_low=x_high=max(1,min(round(x),N))
|
||
|
while N % x_low > 0 and x_low>0:
|
||
|
x_low = x_low - 1
|
||
|
while N % x_high > 0 and x_high < N:
|
||
|
x_high = x_high + 1
|
||
|
return x_low if x - x_low < x_high - x else x_high
|
||
|
|
||
|
class GeneticOperators(object):
|
||
|
|
||
|
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
|
||
|
self.device = device
|
||
|
self.statement = statement
|
||
|
self.parameters = parameters
|
||
|
self.parameter_names = parameter_names
|
||
|
self.TemplateType = TemplateType
|
||
|
self.ParameterType = TemplateType.Parameters
|
||
|
self.build_template = build_template
|
||
|
self.cache = {}
|
||
|
|
||
|
def init(self):
|
||
|
result = [random.choice(L) for L in self.parameters]
|
||
|
while self.build_template(self.TemplateType.Parameters(*result)).check(self.statement)!=0:
|
||
|
result = [random.choice(L) for L in self.parameters]
|
||
|
return result
|
||
|
|
||
|
@staticmethod
|
||
|
def min_to_hyperbol(a, tup):
|
||
|
x = 1
|
||
|
for i in range(100):
|
||
|
dx = 2*(-a**2/x**3 + a*tup[1]/x**2 - tup[0] + x);
|
||
|
ddx = 6*a**2/x**4 - 4*a*tup[1]/x**3 + 2;
|
||
|
if abs(dx) < 1e-7 or abs(ddx) < 1e-7:
|
||
|
break
|
||
|
x-=dx/ddx;
|
||
|
if x<1 or x>a:
|
||
|
x = max(1, min(x, a))
|
||
|
break
|
||
|
new_x = int(closest_divisor(a, x))
|
||
|
new_y = int(a / new_x)
|
||
|
return (new_x, new_y)
|
||
|
|
||
|
def repair(self,func):
|
||
|
def repair_impl(child):
|
||
|
D = odict(zip(self.parameter_names, child))
|
||
|
dummy_template = self.build_template(self.ParameterType(*D.values()))
|
||
|
FetchingPolicy = vcl.atidlas.FetchingPolicy;
|
||
|
if 'local-size-1' not in D:
|
||
|
D['local-size-0'] = min(D['local-size-0'], self.device.max_work_group_size)
|
||
|
elif D['local-size-0']*D['local-size-1'] > self.device.max_work_group_size:
|
||
|
res = GeneticOperators.min_to_hyperbol(self.device.max_work_group_size, (D['local-size-0'], D['local-size-1']))
|
||
|
D['local-size-0'] = res[0]
|
||
|
D['local-size-1'] = res[1]
|
||
|
|
||
|
if self.ParameterType is vcl.atidlas.MatrixProductTemplate.Parameters:
|
||
|
if dummy_template.A_trans != 'N' and dummy_template.B_trans != 'T':
|
||
|
D['simd-width'] = 1
|
||
|
|
||
|
D['mS'] = max(D['mS'], D['simd-width'])
|
||
|
D['mS'] = D['mS'] - D['mS']%D['simd-width']
|
||
|
|
||
|
D['nS'] = max(D['nS'], D['simd-width'])
|
||
|
D['nS'] = D['nS'] - D['nS']%D['simd-width']
|
||
|
|
||
|
|
||
|
if D['A-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL and D['B-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL:
|
||
|
D['local-fetch-size-0']=D['local-fetch-size-1']=0
|
||
|
|
||
|
else:
|
||
|
res = GeneticOperators.min_to_hyperbol(D['local-size-0']*D['local-size-1'], (D['local-fetch-size-0'], D['local-fetch-size-1']))
|
||
|
D['local-fetch-size-0'] = res[0]
|
||
|
D['local-fetch-size-1'] = res[1]
|
||
|
|
||
|
if D['A-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.A_trans=='N' and D['kL'] % D['local-fetch-size-1'] > 0:
|
||
|
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
||
|
|
||
|
if D['B-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.B_trans=='T' and D['kL'] % D['local-fetch-size-1'] > 0:
|
||
|
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
|
||
|
|
||
|
D['kS'] = min(D['kL'], D['kS'])
|
||
|
|
||
|
return D.values()
|
||
|
|
||
|
def wrappper(*args, **kargs):
|
||
|
offspring = func(*args, **kargs)
|
||
|
for child in offspring:
|
||
|
new_child = repair_impl(child)
|
||
|
for i in range(len(child)):
|
||
|
if child[i] != new_child[i]:
|
||
|
child[i] = new_child[i]
|
||
|
|
||
|
return offspring
|
||
|
return wrappper
|
||
|
|
||
|
def mutate(self, individual, indpb):
|
||
|
for i in range(len(individual)):
|
||
|
if random.random() < indpb:
|
||
|
individual[i] = random.choice(self.parameters[i])
|
||
|
return individual,
|
||
|
|
||
|
def evaluate(self, individual):
|
||
|
tupindividual = tuple(individual)
|
||
|
print tupindividual
|
||
|
if tupindividual not in self.cache:
|
||
|
template = self.build_template(self.TemplateType.Parameters(*individual))
|
||
|
if template.check(self.statement)!=0:
|
||
|
self.cache[tupindividual] = 100
|
||
|
else:
|
||
|
template.execute(self.statement, True)
|
||
|
self.statement.result.context.finish_all_queues()
|
||
|
N = 0
|
||
|
current_time = 0
|
||
|
while current_time < 1e-2:
|
||
|
time_before = time.time()
|
||
|
template.execute(self.statement,False)
|
||
|
self.statement.result.context.finish_all_queues()
|
||
|
current_time += time.time() - time_before
|
||
|
N+=1
|
||
|
self.cache[tupindividual] = current_time/N
|
||
|
return self.cache[tupindividual],
|