Files
triton/autotune/genetic_operators.py

127 lines
4.7 KiB
Python
Raw Normal View History

2014-09-02 22:03:20 -04:00
import random
import time
import pyviennacl as vcl
from collections import OrderedDict as odict
def closest_divisor(N, x):
x_low=x_high=max(1,min(round(x),N))
while N % x_low > 0 and x_low>0:
x_low = x_low - 1
while N % x_high > 0 and x_high < N:
x_high = x_high + 1
return x_low if x - x_low < x_high - x else x_high
class GeneticOperators(object):
def __init__(self, device, statement, parameters, parameter_names, TemplateType, build_template):
self.device = device
self.statement = statement
self.parameters = parameters
self.parameter_names = parameter_names
self.TemplateType = TemplateType
self.ParameterType = TemplateType.Parameters
self.build_template = build_template
self.cache = {}
def init(self):
result = [random.choice(L) for L in self.parameters]
while self.build_template(self.TemplateType.Parameters(*result)).check(self.statement)!=0:
result = [random.choice(L) for L in self.parameters]
return result
@staticmethod
def min_to_hyperbol(a, tup):
x = 1
for i in range(100):
dx = 2*(-a**2/x**3 + a*tup[1]/x**2 - tup[0] + x);
ddx = 6*a**2/x**4 - 4*a*tup[1]/x**3 + 2;
if abs(dx) < 1e-7 or abs(ddx) < 1e-7:
break
x-=dx/ddx;
if x<1 or x>a:
x = max(1, min(x, a))
break
new_x = int(closest_divisor(a, x))
new_y = int(a / new_x)
return (new_x, new_y)
def repair(self,func):
def repair_impl(child):
D = odict(zip(self.parameter_names, child))
dummy_template = self.build_template(self.ParameterType(*D.values()))
FetchingPolicy = vcl.atidlas.FetchingPolicy;
if 'local-size-1' not in D:
D['local-size-0'] = min(D['local-size-0'], self.device.max_work_group_size)
elif D['local-size-0']*D['local-size-1'] > self.device.max_work_group_size:
res = GeneticOperators.min_to_hyperbol(self.device.max_work_group_size, (D['local-size-0'], D['local-size-1']))
D['local-size-0'] = res[0]
D['local-size-1'] = res[1]
if self.ParameterType is vcl.atidlas.MatrixProductTemplate.Parameters:
if dummy_template.A_trans != 'N' and dummy_template.B_trans != 'T':
D['simd-width'] = 1
D['mS'] = max(D['mS'], D['simd-width'])
D['mS'] = D['mS'] - D['mS']%D['simd-width']
D['nS'] = max(D['nS'], D['simd-width'])
D['nS'] = D['nS'] - D['nS']%D['simd-width']
if D['A-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL and D['B-fetch-policy']!=FetchingPolicy.FETCH_FROM_LOCAL:
D['local-fetch-size-0']=D['local-fetch-size-1']=0
else:
res = GeneticOperators.min_to_hyperbol(D['local-size-0']*D['local-size-1'], (D['local-fetch-size-0'], D['local-fetch-size-1']))
D['local-fetch-size-0'] = res[0]
D['local-fetch-size-1'] = res[1]
if D['A-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.A_trans=='N' and D['kL'] % D['local-fetch-size-1'] > 0:
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
if D['B-fetch-policy']==FetchingPolicy.FETCH_FROM_LOCAL and dummy_template.B_trans=='T' and D['kL'] % D['local-fetch-size-1'] > 0:
D['kL'] = max(1,round(D['kL']/D['local-fetch-size-1']))*D['local-fetch-size-1']
D['kS'] = min(D['kL'], D['kS'])
return D.values()
def wrappper(*args, **kargs):
offspring = func(*args, **kargs)
for child in offspring:
new_child = repair_impl(child)
for i in range(len(child)):
if child[i] != new_child[i]:
child[i] = new_child[i]
return offspring
return wrappper
def mutate(self, individual, indpb):
for i in range(len(individual)):
if random.random() < indpb:
individual[i] = random.choice(self.parameters[i])
return individual,
def evaluate(self, individual):
tupindividual = tuple(individual)
print tupindividual
if tupindividual not in self.cache:
template = self.build_template(self.TemplateType.Parameters(*individual))
if template.check(self.statement)!=0:
self.cache[tupindividual] = 100
else:
template.execute(self.statement, True)
self.statement.result.context.finish_all_queues()
N = 0
current_time = 0
while current_time < 1e-2:
time_before = time.time()
template.execute(self.statement,False)
self.statement.result.context.finish_all_queues()
current_time += time.time() - time_before
N+=1
self.cache[tupindividual] = current_time/N
return self.cache[tupindividual],