Files
triton/examples/python/pytorch/batchnorm.cpp

73 lines
3.3 KiB
C++
Raw Normal View History

#include <torch/torch.h>
#include <torch/script.h>
#include "ATen/cuda/CUDAContext.h"
#include "triton/driver/stream.h"
#include "triton/dnn/batchnorm.h"
#include "triton/tools/bench.hpp"
std::vector<torch::Tensor>
batchnorm_ymv(const torch::Tensor fw_x,
const torch::Tensor fw_g,
const torch::Tensor fw_b,
float eps) {
// Wrap CUDA handles
c10::DeviceIndex device = fw_x.storage().device().index();
CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();
triton::driver::cu_stream stream(custream, false);
triton::driver::context* ctx = stream.context();
// get sizes
int C = fw_x.size(0);
int H = fw_x.size(1);
int W = fw_x.size(2);
int B = fw_x.size(3);
// allocate outputs
torch::Tensor fw_y = torch::empty(fw_x.sizes()).cuda();
torch::Tensor fw_m = torch::empty(fw_g.sizes()).cuda();
torch::Tensor fw_v = torch::empty(fw_g.sizes()).cuda();
triton::driver::cu_buffer x(ctx, (CUdeviceptr)fw_x.storage().data(), false);
triton::driver::cu_buffer g(ctx, (CUdeviceptr)fw_g.storage().data(), false);
triton::driver::cu_buffer b(ctx, (CUdeviceptr)fw_b.storage().data(), false);
triton::driver::cu_buffer y(ctx, (CUdeviceptr)fw_y.storage().data(), false);
triton::driver::cu_buffer m(ctx, (CUdeviceptr)fw_m.storage().data(), false);
triton::driver::cu_buffer v(ctx, (CUdeviceptr)fw_v.storage().data(), false);
// create template
triton::dnn::batchnorm_forward batchnorm(C, 1, H, W, B, "fp32", eps);
batchnorm.enqueue(&stream, {&y, &m, &v, &x, &g, &b});
return {fw_y, fw_m, fw_v};
}
std::vector<torch::Tensor>
batchnorm_dxdgdb(const torch::Tensor fw_dy,
const torch::Tensor fw_x,
const torch::Tensor fw_g,
const torch::Tensor fw_m,
const torch::Tensor fw_v,
float eps) {
// Wrap CUDA handles
c10::DeviceIndex device = fw_x.storage().device().index();
CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();
triton::driver::cu_stream stream(custream, false);
triton::driver::context* ctx = stream.context();
// get sizes
int C = fw_x.size(0);
int H = fw_x.size(1);
int W = fw_x.size(2);
int B = fw_x.size(3);
// allocate outputs
torch::Tensor fw_dx = torch::empty(fw_x.sizes()).cuda();
torch::Tensor fw_dg = torch::empty(fw_g.sizes()).cuda();
torch::Tensor fw_db = torch::empty(fw_g.sizes()).cuda();
// triton handles
triton::driver::cu_buffer dy(ctx, (CUdeviceptr)fw_dy.storage().data(), false);
triton::driver::cu_buffer x(ctx, (CUdeviceptr) fw_x.storage().data(), false);
triton::driver::cu_buffer g(ctx, (CUdeviceptr) fw_g.storage().data(), false);
triton::driver::cu_buffer m(ctx, (CUdeviceptr) fw_m.storage().data(), false);
triton::driver::cu_buffer v(ctx, (CUdeviceptr) fw_v.storage().data(), false);
triton::driver::cu_buffer dx(ctx, (CUdeviceptr)fw_dx.storage().data(), false);
triton::driver::cu_buffer dg(ctx, (CUdeviceptr)fw_dg.storage().data(), false);
triton::driver::cu_buffer db(ctx, (CUdeviceptr)fw_db.storage().data(), false);
// create config
triton::dnn::batchnorm_backward batchnorm(C, 1, H, W, B, "fp32", eps);
batchnorm.enqueue(&stream, {&dx, &dg, &db, &dy, &x, &g, &m, &v});
}