Files
triton/lib/jit/syntax/expression/preset.cpp

132 lines
4.3 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2015, PHILIPPE TILLET. All rights reserved.
*
* This file is part of ISAAC.
*
* ISAAC is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include "isaac/jit/syntax/expression/preset.h"
namespace isaac
{
namespace symbolic
{
namespace preset
{
void matrix_product::handle_node(expression_tree::data_type const & tree, size_t root, args & a)
{
expression_tree::node const & node = tree[root];
if(node.type != COMPOSITE_OPERATOR_TYPE)
return;
expression_tree::node const & left = tree[node.binary_operator.lhs];
expression_tree::node const & right = tree[node.binary_operator.rhs];
//Matrix-Matrix product node
if(node.binary_operator.op.type_family==MATRIX_PRODUCT)
{
if(left.type==DENSE_ARRAY_TYPE) a.A = &left;
if(right.type==DENSE_ARRAY_TYPE) a.B = &right;
switch(node.binary_operator.op.type)
{
case MATRIX_PRODUCT_NN_TYPE: a.type = MATRIX_PRODUCT_NN; break;
case MATRIX_PRODUCT_NT_TYPE: a.type = MATRIX_PRODUCT_NT; break;
case MATRIX_PRODUCT_TN_TYPE: a.type = MATRIX_PRODUCT_TN; break;
case MATRIX_PRODUCT_TT_TYPE: a.type = MATRIX_PRODUCT_TT; break;
default: break;
}
}
//Scalar multiplication node
if(node.binary_operator.op.type==MULT_TYPE)
{
//alpha*PROD
if(left.type==VALUE_SCALAR_TYPE && right.type==COMPOSITE_OPERATOR_TYPE
&& right.binary_operator.op.type_family==MATRIX_PRODUCT)
{
a.alpha = cast(value_scalar(left.scalar, left.dtype), node.dtype);
handle_node(tree, node.binary_operator.rhs, a);
}
//beta*C
if(left.type==VALUE_SCALAR_TYPE && right.type==DENSE_ARRAY_TYPE)
{
a.beta = cast(value_scalar(left.scalar, left.dtype), node.dtype);
a.C = &right;
}
}
}
matrix_product::args matrix_product::check(expression_tree::data_type const & tree, size_t root)
{
expression_tree::node const & node = tree[root];
expression_tree::node const & left = tree[node.binary_operator.lhs];
expression_tree::node const & right = tree[node.binary_operator.rhs];
numeric_type dtype = node.dtype;
matrix_product::args result ;
if(dtype==INVALID_NUMERIC_TYPE)
return result;
result.alpha = value_scalar(1, dtype);
result.beta = value_scalar(0, dtype);
if(right.type==COMPOSITE_OPERATOR_TYPE)
{
bool is_add = right.binary_operator.op.type==ADD_TYPE;
bool is_sub = right.binary_operator.op.type==SUB_TYPE;
//Form X +- Y"
if(is_add || is_sub)
{
expression_tree::node const & rleft = tree[right.binary_operator.lhs];
expression_tree::node const & rright = tree[right.binary_operator.rhs];
if(rleft.type==COMPOSITE_OPERATOR_TYPE)
handle_node(tree, right.binary_operator.lhs, result);
else if(rleft.type==DENSE_ARRAY_TYPE)
{
result.C = &rleft;
result.beta = value_scalar(1, dtype);
result.alpha = value_scalar(is_add?1:-1, dtype);
}
if(rright.type==COMPOSITE_OPERATOR_TYPE)
handle_node(tree, right.binary_operator.rhs, result);
else if(rright.type==DENSE_ARRAY_TYPE)
{
result.C = &rright;
result.alpha = value_scalar(1, dtype);
result.beta = value_scalar(is_add?1:-1, dtype);
}
}
else{
handle_node(tree, node.binary_operator.rhs, result);
}
}
if(result.C == NULL)
result.C = &left;
else if(result.C != &left)
result.C = NULL;
return result;
}
}
}
}