Files
triton/getting-started/tutorials/02-fused-softmax.html

407 lines
31 KiB
HTML
Raw Normal View History

2021-03-06 17:35:11 -05:00
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Fused Softmax &mdash; Triton documentation</title>
<link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-binder.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-dataframe.css" type="text/css" />
<link rel="stylesheet" href="../../_static/gallery-rendered-html.css" type="text/css" />
2021-03-19 16:19:37 -04:00
<link rel="stylesheet" href="../../_static/css/custom.css" type="text/css" />
2021-03-06 17:35:11 -05:00
<!--[if lt IE 9]>
<script src="../../_static/js/html5shiv.min.js"></script>
<![endif]-->
<script type="text/javascript" id="documentation_options" data-url_root="../../" src="../../_static/documentation_options.js"></script>
<script src="../../_static/jquery.js"></script>
<script src="../../_static/underscore.js"></script>
<script src="../../_static/doctools.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="../../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../../genindex.html" />
<link rel="search" title="Search" href="../../search.html" />
2021-03-15 13:58:20 -04:00
<link rel="next" title="Matrix Multiplication" href="03-matrix-multiplication.html" />
2021-03-06 17:35:11 -05:00
<link rel="prev" title="Vector Addition" href="01-vector-add.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../../index.html" class="icon icon-home"> Triton
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<p class="caption"><span class="caption-text">Getting Started</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../installation.html">Installation</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">Tutorials</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="01-vector-add.html">Vector Addition</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Fused Softmax</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#motivations">Motivations</a></li>
<li class="toctree-l3"><a class="reference internal" href="#compute-kernel">Compute Kernel</a></li>
<li class="toctree-l3"><a class="reference internal" href="#unit-test">Unit Test</a></li>
2021-03-15 13:58:20 -04:00
<li class="toctree-l3"><a class="reference internal" href="#benchmark">Benchmark</a></li>
2021-03-06 17:35:11 -05:00
</ul>
</li>
2021-03-15 13:58:20 -04:00
<li class="toctree-l2"><a class="reference internal" href="03-matrix-multiplication.html">Matrix Multiplication</a></li>
2021-03-06 17:35:11 -05:00
</ul>
</li>
</ul>
2021-04-21 01:40:29 -04:00
<p class="caption"><span class="caption-text">Language Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../language-reference/python-api/index.html">Python API</a></li>
</ul>
2021-03-19 16:19:37 -04:00
<p class="caption"><span class="caption-text">Programming Guide</span></p>
<ul>
2021-03-23 17:10:07 -04:00
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-1/introduction.html">Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../programming-guide/chapter-2/related-work.html">Related Work</a></li>
2021-03-19 16:19:37 -04:00
</ul>
2021-03-06 17:35:11 -05:00
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../../index.html">Triton</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="../../index.html" class="icon icon-home"></a> &raquo;</li>
<li><a href="index.html">Tutorials</a> &raquo;</li>
<li>Fused Softmax</li>
<li class="wy-breadcrumbs-aside">
<a href="../../_sources/getting-started/tutorials/02-fused-softmax.rst.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="sphx-glr-download-link-note admonition note">
<p class="admonition-title">Note</p>
<p>Click <a class="reference internal" href="#sphx-glr-download-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">here</span></a>
to download the full example code</p>
</div>
<div class="sphx-glr-example-title section" id="fused-softmax">
<span id="sphx-glr-getting-started-tutorials-02-fused-softmax-py"></span><h1>Fused Softmax<a class="headerlink" href="#fused-softmax" title="Permalink to this headline"></a></h1>
2021-03-06 22:06:32 -05:00
<p>In this tutorial, you will write a fused softmax operation (that outperforms PyTorch) and learn about:</p>
2021-03-06 17:35:11 -05:00
<ul class="simple">
<li><p>The benefits of kernel fusion for bandwidth-bound operations.</p></li>
2021-04-21 01:40:29 -04:00
<li><p>The reduction operators in Triton.</p></li>
2021-03-06 17:35:11 -05:00
</ul>
<div class="section" id="motivations">
<h2>Motivations<a class="headerlink" href="#motivations" title="Permalink to this headline"></a></h2>
<p>Custom GPU kernels for elementwise additions are educationally valuable but wont get you very far in practice.
Let us consider instead the case of a simple (numerically stabilized) softmax operation:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="c1"># Compute the row-wise softmax of x</span>
<span class="k">def</span> <span class="nf">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="c1"># read MN elements ; write M elements</span>
<span class="n">x_max</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="c1"># read 2MN elements ; write MN elements</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">x_max</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span>
<span class="c1"># read MN elements ; write MN elements</span>
<span class="n">numerator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># read MN elements ; write M elements</span>
<span class="n">denominator</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">numerator</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># read 2MN elements ; write MN elements</span>
<span class="n">ret</span> <span class="o">=</span> <span class="n">numerator</span> <span class="o">/</span> <span class="n">denominator</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span>
<span class="c1"># in total: read 7MN elements ; wrote 3MN + 2M elements</span>
<span class="k">return</span> <span class="n">ret</span>
</pre></div>
</div>
<p>When implemented naively in pytorch, computing <code class="code docutils literal notranslate"><span class="pre">y</span> <span class="pre">=</span> <span class="pre">naive_softmax(x)</span></code> for <span class="math notranslate nohighlight">\(x \in R^{M \times N}\)</span> requires reading <span class="math notranslate nohighlight">\(7MN\)</span> elements from DRAM and writing back <span class="math notranslate nohighlight">\(3MN + 2M\)</span> elements.
2021-03-06 22:06:32 -05:00
This is obviously wasteful; wed prefer to have a custom “fused” kernel that only reads X once and does all the necessary computations on-chip.
2021-04-21 01:40:29 -04:00
This solution would require reading and writing back only <span class="math notranslate nohighlight">\(MN\)</span> bytes, so we could expect a theoretical speed-up of ~5x (i.e., <span class="math notranslate nohighlight">\((10MN + 2M) / 2MN\)</span>).
2021-03-06 22:06:32 -05:00
In practice, though, we would be getting a bit less as our kernel computes exponentials and internally moves data around in shared memory.</p>
2021-03-06 17:35:11 -05:00
</div>
<div class="section" id="compute-kernel">
<h2>Compute Kernel<a class="headerlink" href="#compute-kernel" title="Permalink to this headline"></a></h2>
2021-04-21 01:40:29 -04:00
<p>Our softmax kernel works as follows: each program loads a row of the input matrix X, normalizes it and writes back the result to the output Y.
2021-03-06 22:06:32 -05:00
Note that one important limitation of Triton is that each block must have a power-of-two number of elements,
so we need to internally “pad” tiles and guard the memory operations properly if we want to handle any possible input shapes:</p>
2021-04-21 01:40:29 -04:00
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">triton</span>
<span class="nd">@triton</span><span class="o">.</span><span class="n">jit</span>
<span class="k">def</span> <span class="nf">_softmax</span><span class="p">(</span><span class="n">Y</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="n">stride_xm</span><span class="p">,</span> <span class="n">stride_ym</span><span class="p">,</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="o">**</span><span class="n">meta</span><span class="p">):</span>
<span class="c1"># row index</span>
<span class="n">m</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">program_id</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="c1"># col indices</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">meta</span><span class="p">[</span><span class="s1">&#39;BLOCK&#39;</span><span class="p">])</span>
<span class="c1"># the memory address of all the elements</span>
<span class="c1"># that we want to load can be computed as follows</span>
<span class="n">X</span> <span class="o">=</span> <span class="n">X</span> <span class="o">+</span> <span class="n">m</span> <span class="o">*</span> <span class="n">stride_xm</span> <span class="o">+</span> <span class="n">n</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">load</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">n</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">,</span> <span class="n">other</span><span class="o">=-</span><span class="nb">float</span><span class="p">(</span><span class="s1">&#39;inf&#39;</span><span class="p">))</span>
<span class="c1"># Substract maximum for numerical stability</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">x</span> <span class="o">-</span> <span class="n">triton</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="c1"># Note that exponentials in Triton are fast</span>
<span class="c1"># but approximate (i.e., think __expf in CUDA)</span>
<span class="n">num</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
<span class="n">denom</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">num</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">num</span> <span class="o">/</span> <span class="n">denom</span>
<span class="c1"># Write back to Y</span>
<span class="n">Y</span> <span class="o">=</span> <span class="n">Y</span> <span class="o">+</span> <span class="n">m</span> <span class="o">*</span> <span class="n">stride_ym</span> <span class="o">+</span> <span class="n">n</span>
<span class="n">triton</span><span class="o">.</span><span class="n">store</span><span class="p">(</span><span class="n">Y</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">n</span> <span class="o">&lt;</span> <span class="n">N</span><span class="p">)</span>
2021-03-06 17:35:11 -05:00
</pre></div>
</div>
2021-04-21 01:40:29 -04:00
<p>We can create a helper function that enqueues the kernel and its (meta-)arguments for any given input tensor.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">next_power_of_2</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
2021-03-06 17:35:11 -05:00
<span class="n">n</span> <span class="o">-=</span> <span class="mi">1</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">1</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">2</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">4</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">8</span>
<span class="n">n</span> <span class="o">|=</span> <span class="n">n</span> <span class="o">&gt;&gt;</span> <span class="mi">16</span>
<span class="n">n</span> <span class="o">+=</span> <span class="mi">1</span>
<span class="k">return</span> <span class="n">n</span>
2021-04-21 01:40:29 -04:00
<span class="k">def</span> <span class="nf">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="n">M</span><span class="p">,</span> <span class="n">N</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span>
<span class="c1"># The block size is the smallest power of two greater than the number of columns in `x`</span>
2021-03-06 17:35:11 -05:00
<span class="n">BLOCK</span> <span class="o">=</span> <span class="n">next_power_of_2</span><span class="p">(</span><span class="n">N</span><span class="p">)</span>
2021-03-15 13:58:20 -04:00
<span class="c1"># Another trick we can use is to ask the compiler to parallelize each</span>
<span class="c1"># row-normalization more aggressively -- i.e., with more warps -- vectors</span>
<span class="c1"># that are longer</span>
<span class="c1"># You will see in the next tutorial how to auto-tune this value in a more natural</span>
<span class="c1"># way so you don&#39;t have to come up with manual heuristics yourself</span>
<span class="n">num_warps</span> <span class="o">=</span> <span class="mi">4</span>
<span class="k">if</span> <span class="n">BLOCK</span> <span class="o">&gt;=</span> <span class="mi">2048</span><span class="p">:</span> <span class="n">num_warps</span> <span class="o">=</span> <span class="mi">8</span>
<span class="k">if</span> <span class="n">BLOCK</span> <span class="o">&gt;=</span> <span class="mi">4096</span><span class="p">:</span> <span class="n">num_warps</span> <span class="o">=</span> <span class="mi">16</span>
2021-04-21 01:40:29 -04:00
<span class="c1"># Allocate output</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">empty_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># Enqueue kernel. The launch grid is simple: we have one kernel instance per row of the input matrix</span>
<span class="n">_softmax</span><span class="p">[(</span><span class="n">M</span><span class="p">,</span> <span class="p">)](</span><span class="n">y</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">y</span><span class="o">.</span><span class="n">stride</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">BLOCK</span><span class="o">=</span><span class="n">BLOCK</span><span class="p">)</span>
<span class="k">return</span> <span class="n">y</span>
2021-03-06 17:35:11 -05:00
</pre></div>
</div>
</div>
<div class="section" id="unit-test">
<h2>Unit Test<a class="headerlink" href="#unit-test" title="Permalink to this headline"></a></h2>
2021-03-06 22:06:32 -05:00
<p>We make sure that we test our kernel on a matrix with an irregular number of rows and columns.
This will allow us to verify that our padding mechanism works.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">torch</span><span class="o">.</span><span class="n">manual_seed</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1823</span><span class="p">,</span> <span class="mi">781</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">)</span>
2021-03-06 17:35:11 -05:00
<span class="n">y_tri</span> <span class="o">=</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">y_ref</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">y_tri</span><span class="p">,</span> <span class="n">y_ref</span><span class="p">))</span>
</pre></div>
</div>
<p class="sphx-glr-script-out">Out:</p>
2021-03-06 22:06:32 -05:00
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>True
2021-03-06 17:35:11 -05:00
</pre></div>
</div>
2021-03-06 22:06:32 -05:00
<p>As expected, the results are identical.</p>
2021-03-06 17:35:11 -05:00
</div>
2021-03-15 13:58:20 -04:00
<div class="section" id="benchmark">
<h2>Benchmark<a class="headerlink" href="#benchmark" title="Permalink to this headline"></a></h2>
2021-03-06 22:06:32 -05:00
<p>Here we will benchmark our operation as a function of the number of columns in the input matrix assuming 4096 rows.
We will then compare its performance against (1) <code class="code docutils literal notranslate"><span class="pre">torch.softmax</span></code> and (2) the <code class="code docutils literal notranslate"><span class="pre">naive_softmax</span></code> defined above.</p>
2021-03-11 11:58:42 -05:00
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">perf_report</span><span class="p">(</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">Benchmark</span><span class="p">(</span>
<span class="n">x_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;N&#39;</span><span class="p">],</span> <span class="c1"># argument names to use as an x-axis for the plot</span>
<span class="n">x_vals</span><span class="o">=</span><span class="p">[</span><span class="mi">256</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50</span><span class="p">)],</span> <span class="c1"># different possible values for `x_name`</span>
<span class="n">y_name</span><span class="o">=</span><span class="s1">&#39;provider&#39;</span><span class="p">,</span> <span class="c1"># argument name whose value corresponds to a different line in the plot</span>
<span class="n">y_vals</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;torch&#39;</span><span class="p">,</span> <span class="s1">&#39;triton&#39;</span><span class="p">,</span> <span class="s1">&#39;naive&#39;</span><span class="p">],</span> <span class="c1"># possible keys for `y_name`</span>
<span class="n">y_lines</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;Torch&quot;</span><span class="p">,</span> <span class="s2">&quot;Triton&quot;</span><span class="p">,</span> <span class="s1">&#39;Naive&#39;</span><span class="p">],</span> <span class="c1"># label name for the lines</span>
<span class="n">ylabel</span><span class="o">=</span><span class="s2">&quot;GB/s&quot;</span><span class="p">,</span> <span class="c1"># label name for the y-axis</span>
<span class="n">plot_name</span><span class="o">=</span><span class="s2">&quot;softmax-performance&quot;</span><span class="p">,</span> <span class="c1"># name for the plot. Used also as a file name for saving the plot.</span>
<span class="n">args</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;M&#39;</span><span class="p">:</span> <span class="mi">4096</span><span class="p">}</span> <span class="c1"># values for function arguments not in `x_names` and `y_name`</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">benchmark</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">provider</span><span class="p">):</span>
2021-03-06 17:35:11 -05:00
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
2021-03-11 11:58:42 -05:00
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">))</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;triton&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;naive&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">nelement</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">*</span> <span class="mf">1e-9</span> <span class="o">/</span> <span class="p">(</span><span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-3</span><span class="p">)</span>
<span class="k">return</span> <span class="n">gbps</span><span class="p">(</span><span class="n">ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">max_ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">min_ms</span><span class="p">)</span>
<span class="n">benchmark</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">show_plots</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
2021-03-06 17:35:11 -05:00
</pre></div>
</div>
2021-03-29 11:59:18 -04:00
<img alt="02 fused softmax" class="sphx-glr-single-img" src="../../_images/sphx_glr_02-fused-softmax_001.png" />
2021-03-06 22:06:32 -05:00
<p>In the above plot, we can see that:</p>
<blockquote>
<div><ul class="simple">
<li><p>Triton is 4-5x faster than the naive implementation, which is consistent with our theoretical predictions.</p></li>
<li><p>Triton is significantly faster than <code class="code docutils literal notranslate"><span class="pre">torch.softmax</span></code> for very large input matrices. My guess from looking at the source-code of the <a class="reference external" href="https://github.com/pytorch/pytorch/blob/9409a3a39b7149bb2d833a89e0c944109bef7c27/caffe2/operators/softmax_ops.cu#L240">PyTorch kernel</a> is that PyTorch only partially fuses the computation of the softmax.
This means that when temporary data is too large to fit entirely in the GPUs cache it transfers almost twice the amount of data necessary.
Note that our Triton kernel is not only faster than PyTorchs CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
</ul>
</div></blockquote>
2021-04-21 01:40:29 -04:00
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 20.767 seconds)</p>
2021-03-06 17:35:11 -05:00
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
</div>
<div class="sphx-glr-download sphx-glr-download-jupyter docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/034d953b6214fedce6ea03803c712b89/02-fused-softmax.ipynb"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Jupyter</span> <span class="pre">notebook:</span> <span class="pre">02-fused-softmax.ipynb</span></code></a></p>
</div>
</div>
<p class="sphx-glr-signature"><a class="reference external" href="https://sphinx-gallery.github.io">Gallery generated by Sphinx-Gallery</a></p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
2021-03-15 13:58:20 -04:00
<a href="03-matrix-multiplication.html" class="btn btn-neutral float-right" title="Matrix Multiplication" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right" aria-hidden="true"></span></a>
2021-03-06 17:35:11 -05:00
<a href="01-vector-add.html" class="btn btn-neutral float-left" title="Vector Addition" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left" aria-hidden="true"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&#169; Copyright 2020, Philippe Tillet.
</p>
</div>
Built with <a href="https://www.sphinx-doc.org/">Sphinx</a> using a
<a href="https://github.com/readthedocs/sphinx_rtd_theme">theme</a>
provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>