Files
triton/python/src/tensorflow.cc

262 lines
8.0 KiB
C++
Raw Normal View History

#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <string>
#include <regex>
#include <algorithm>
#include "triton/codegen/selection/selection.h"
#include "triton/runtime/function.h"
#include "triton/lang/lang.h"
#include "triton/driver/device.h"
#include "triton/driver/stream.h"
#include "triton/driver/kernel.h"
#include "triton/driver/module.h"
#include "triton/ir/module.h"
#include "triton/ir/function.h"
#include "triton/tools/bench.hpp"
typedef struct yy_buffer_state * YY_BUFFER_STATE;
extern int yyparse();
extern YY_BUFFER_STATE yy_scan_string(const char * str);
extern void yy_delete_buffer(YY_BUFFER_STATE buffer);
extern triton::lang::translation_unit *ast_root;
using namespace triton;
inline std::string to_tf_ty(ir::type *ty) {
if(ty->is_integer_ty(1))
return "bool";
if(ty->is_integer_ty(8))
return "int8";
if(ty->is_integer_ty(16))
return "int16";
if(ty->is_integer_ty(32))
return "int32";
if(ty->is_integer_ty(64))
return "int64";
if(ty->is_half_ty())
return "float16";
if(ty->is_float_ty())
return "float32";
if(ty->is_double_ty())
return "float64";
if(ty->is_pointer_ty())
return "Tensor";
throw std::runtime_error("unknown type");
}
inline std::string to_tf_scalar_ty(ir::type *ty) {
if(ty->is_pointer_ty())
return to_tf_ty(ty->get_pointer_element_ty());
else {
return to_tf_ty(ty);
}
}
inline std::string ref_to_tf_ty(ir::type *ty) {
std::string res = to_tf_ty(ty);
if(ty->is_pointer_ty())
res = "const " + res + "&";
return res;
}
inline triton::lang::translation_unit *make_ast(const char *src) {
YY_BUFFER_STATE buffer = yy_scan_string(src);
yyparse();
yy_delete_buffer(buffer);
triton::lang::translation_unit *program = ast_root;
return program;
}
inline std::unique_ptr<ir::module> make_ir(ir::context& ctx, triton::lang::translation_unit *program) {
// create Triton-IR from AST
ir::module* module = new ir::module("", ctx);
program->codegen(module);
return std::unique_ptr<ir::module>(module);
}
void gen_extract_inputs(std::ostream &os, const std::vector<ir::argument*>& args) {
for(unsigned i = 0; i < args.size(); i++){
ir::value *arg = args[i];
std::string suffix = "";
ir::type *tr_ty = arg->get_type();
std::string tf_ty = ref_to_tf_ty(tr_ty);
if(!tr_ty->is_pointer_ty())
suffix = ".scalar<" + tf_ty + ">()()";
os << " " << tf_ty << " " << arg->get_name() << " = context->input(" << i << ")" << suffix << ";\n ";
}
}
void gen_set_outputs(std::ostream &os, const std::vector<std::string>& outputs) {
for(unsigned i = 0; i < outputs.size(); i++)
os << " context->set_output(" << i << ", " << outputs[i] << ");\n ";
}
void gen_make_handles(std::ostream &os, const std::vector<ir::argument*>& args) {
for(unsigned i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
if(!arg->get_type()->is_pointer_ty())
continue;
const std::string& name = arg->get_name();
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + ".tensor_data().size(), (CUdeviceptr)" + name + ".tensor_data().data(), false);\n ";
}
}
void gen_make_spmd_grid(std::ostream &os, const std::vector<std::string>& macros) {
std::regex regex("#([a-zA-Z]([a-zA-Z]|[0-9])*)");
std::vector<std::string> grids = macros;
for(size_t i = grids.size(); i < 3; i++)
grids.push_back("1");
std::string grid = "rt::grid_t{";
for(size_t i = 0; i < grids.size(); i++){
if(i > 0)
grid += ", ";
grid += std::regex_replace(grids[i], regex, "x.at(\"$1\")");
}
grid += "}";
os << " auto grid = [&](const rt::params_t& x) { return " << grid << "; };\n ";
}
void gen_make_launch_function(std::ostream &os, const std::vector<ir::argument*>& args) {
os << " fn_({";
for(unsigned i = 0; i < args.size() ; i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
if(arg->get_type()->is_pointer_ty())
name = "&cu_" + name;
if(i > 0)
os << ", ";
os << name;
}
os << "}, grid, stream); \n";
}
void gen_register_kernel_builder(std::ostream &os, const std::string &name,
2019-08-19 20:56:39 -07:00
const std::string &opname,
const std::vector<ir::argument*>& args){
os << "REGISTER_KERNEL_BUILDER(Name(\"" + name + "\").Device(DEVICE_GPU)";
for(size_t i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
auto tolower = [](char c) { return std::tolower(c);};
std::transform(name.begin(), name.end(), name.begin(), tolower);
if(!arg->get_type()->is_pointer_ty())
os << ".HostMemory(\"" + name + "\")";
}
2019-08-19 20:56:39 -07:00
os << ", " + opname << ");\n";
}
void gen_register_op(std::ostream &os, const std::string &name,
const std::vector<ir::argument*>& args,
const std::vector<std::string>& outputs){
os << "REGISTER_OP(\"" << name << "\")\n";
for(size_t i = 0; i < args.size(); i++){
ir::argument *arg = args[i];
std::string name = arg->get_name();
auto tolower = [](char c) { return std::tolower(c);};
std::transform(name.begin(), name.end(), name.begin(), tolower);
os << " .Input(\"" << name << ": " << to_tf_scalar_ty(arg->get_type()) << "\")\n";
}
for(size_t i = 0; i < outputs.size(); i++){
std::string name = outputs[i];
size_t idx;
for(idx = 0; idx < args.size(); idx++)
if(args[idx]->get_name() == name)
break;
if(idx == args.size())
throw std::runtime_error("unknown output");
os << " .Output(\"out" << i << ": " << to_tf_scalar_ty(args[idx]->get_type()) << "\")\n";
}
os << ";\n";
}
std::string make_tensorflow_src(const std::string src,
2019-08-17 16:12:17 -07:00
const std::vector<std::string>& outputs,
const std::vector<std::string>& macros) {
triton::lang::translation_unit *ast = make_ast(src.c_str());
triton::ir::context context;
std::unique_ptr<ir::module> ir = make_ir(context, ast);
// function
ir::function* fn = ir->get_function_list().front();
std::string name = fn->get_name();
name[0] = static_cast<char>(std::toupper(name[0]));
2019-08-19 20:56:39 -07:00
std::string opname = name + "Op";
std::ostringstream oss;
oss << R"(
#include "triton/driver/buffer.h"
#include "triton/driver/backend.h"
#include "triton/driver/stream.h"
#include "triton/runtime/function.h"
#define EIGEN_USE_GPU
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/util/cuda_kernel_helper.h"
#include "tensorflow/core/util/padding.h"
#include "tensorflow/core/util/tensor_format.h"
#include "tensorflow/core/framework/common_shape_fns.h"
using namespace tensorflow;
using GPUDevice = Eigen::GpuDevice;
namespace rt = triton::runtime;
namespace drv = triton::driver;
std::string src = R"TTKERNSRC( )" + src + ")TTKERNSRC\";" + R"(
2019-08-19 20:56:39 -07:00
class )" << opname << R"(: public OpKernel {
public:
2019-08-19 20:56:39 -07:00
explicit )" << opname << R"((OpKernelConstruction* context)
: OpKernel(context), fn_(src) { }
void Compute(OpKernelContext* context){
// get device/stream
GPUDevice device = context->eigen_device<GPUDevice>();
drv::cu_stream sstream(device.stream(), false);
drv::context* ctx = sstream.context();
drv::stream* stream = &sstream;
// extract inputs
)";
gen_extract_inputs(oss, fn->args());
oss << R"(
// set outputs
)";
gen_set_outputs(oss, outputs);
oss << R"(
// wrap tensors
)";
gen_make_handles(oss, fn->args());
oss << R"(
// create spmd grid
)";
gen_make_spmd_grid(oss, macros);
oss << R"(
// launch function
)";
gen_make_launch_function(oss, fn->args());
oss << R"(
}
private:
rt::function fn_;
};
// register kernel builder
)";
2019-08-19 20:56:39 -07:00
gen_register_kernel_builder(oss, name, opname, fn->args());
oss << R"(
// register op
)";
gen_register_op(oss, name, fn->args(), outputs);
return oss.str();
}
PYBIND11_MODULE(libtriton, m) {
m.doc() = "Python bindings to the C++ Triton API";
m.def("make_tensorflow_src", &make_tensorflow_src, "Creates C++ source code for a custom Tensorflow op corresponding to the specified Triton kernel");
}