Files
triton/python/autotune/pysrc/autotune.py

190 lines
11 KiB
Python
Raw Normal View History

2014-09-02 22:03:20 -04:00
from __future__ import division
import argparse, itertools, os, sys, json
2014-10-16 06:57:38 -04:00
import misc_tools, optimize
2014-09-02 22:03:20 -04:00
import pyopencl as cl
import pyviennacl as vcl
import pyatidlas as atd
import numpy as np
2014-09-02 22:03:20 -04:00
from configobj import ConfigObj
from numpy import random
from dataset import generate_dataset
from model import train_model
2014-09-02 22:03:20 -04:00
DATATYPES = { 'single' : vcl.float32,
2014-09-06 00:39:38 -04:00
'double' : vcl.float64 }
2014-09-02 22:03:20 -04:00
TYPES = { 'vector-axpy': {'template':atd.VectorAxpyTemplate,
2014-09-06 00:39:38 -04:00
'perf-index':lambda x: 3*x[0]*x[1][0]/x[2]*1e-9,
'perf-measure':'GB/s'},
2014-09-29 03:01:33 +02:00
'matrix-axpy': {'template':atd.MatrixAxpyTemplate,
2014-09-06 00:39:38 -04:00
'perf-index':lambda x: 3*x[0]*x[1][0]*x[1][1]/x[2]*1e-9,
'perf-measure':'GB/s'},
2014-09-29 03:01:33 +02:00
'reduction': {'template':atd.ReductionTemplate,
2014-10-05 06:33:50 +02:00
'perf-index':lambda x: 2*x[0]*x[1][0]/x[2]*1e-9,
2014-09-06 00:39:38 -04:00
'perf-measure':'GB/s'},
2014-09-29 03:01:33 +02:00
'row-wise-reduction': {'template':atd.RowWiseReductionTemplate,
2014-09-06 00:39:38 -04:00
'perf-index':lambda x: x[0]*x[1][0]*x[1][1]/x[2]*1e-9,
'perf-measure':'GB/s'},
2014-09-29 03:01:33 +02:00
'matrix-product': {'template': atd.MatrixProductTemplate,
2014-09-06 00:39:38 -04:00
'perf-index': lambda x: 2*x[1][0]*x[1][1]*x[1][2]/x[2]*1e-9,
'perf-measure': 'GFLOP/s'} }
2014-09-29 03:01:33 +02:00
def do_tuning(config_fname, viennacl_root, device):
json_out = {}
config = ConfigObj(config_fname)
2014-10-03 09:29:45 +02:00
def map_to_list(T, x):
return list(map(T, x if isinstance(x, list) else [x]))
2014-10-05 06:33:50 +02:00
for operation in ['vector-axpy', 'matrix-axpy', 'reduction', 'row-wise-reduction', 'matrix-product']:
2014-09-29 03:01:33 +02:00
if operation in config:
p = config[operation]
2014-10-03 09:29:45 +02:00
precisions = map_to_list(str, p['precision'])
if 'all' in precisions:
precisions = ['single','double']
2014-09-29 03:01:33 +02:00
datatypes = [DATATYPES[k] for k in precisions]
#Iterate through the datatypes
for datatype in datatypes:
2014-09-29 03:01:33 +02:00
ctx = cl.Context([device])
ctx = vcl.backend.Context(ctx)
2014-09-29 03:01:33 +02:00
#Check data-type
if datatype is vcl.float64 and not device.double_fp_config:
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
continue
#Helper for execution
def execute(device, node, other_params, sizes, fname = os.devnull, parameters = None):
with vcl.Statement(node) as statement:
if parameters:
TemplateType = TYPES[operation]['template']
2014-10-16 06:57:38 -04:00
return misc_tools.benchmark(TemplateType(TemplateType.Parameters(*parameters),*other_params), statement, device)
print('-----')
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
with open(fname, "w+") as archive:
return optimize.genetic(statement, device, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
#Helper for tuning
def tune(execution_handler, nTuning, nDataPoints, draw, additional_parameters):
if 'size' in p:
profile = execution_handler(map_to_list(int, p['size']))
if 'viennacl-src-root' in config:
2014-10-16 06:57:38 -04:00
misc_tools.update_viennacl_headers(config['viennacl-src-root'],device,datatype,operation,additional_parameters,profile)
else:
def compute_perf(x, t):
return TYPES[operation]['perf-index']([datatype().itemsize, x, t])
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler, nTuning, nDataPoints, draw)
clf = train_model(X, Y, profiles, TYPES[operation]['perf-measure'])
#Update JSON
full_operation = operation + ''.join(additional_parameters)
if full_operation not in json_out:
json_out[full_operation] = {}
json_out[full_operation][datatype.__name__] = {}
D = json_out[full_operation][datatype.__name__]
D['profiles'] = [ prof.astype('int').tolist() for prof in profiles]
D['predictor'] = [{'children_left': e.tree_.children_left.tolist(),
'children_right': e.tree_.children_right.tolist(),
'threshold': e.tree_.threshold.astype('float32').tolist(),
'feature': e.tree_.feature.astype('float32').tolist(),
'value': e.tree_.value[:,:,0].astype('float32').tolist()} for e in clf.estimators_]
2014-09-29 03:01:33 +02:00
#Vector AXPY
if operation=='vector-axpy':
2014-10-03 09:29:45 +02:00
def execution_handler(sizes, fname=os.devnull, parameters=None):
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
z = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
return execute(device, vcl.Assign(z, vcl.ElementProd(vcl.exp(x + y),vcl.cos(x + y))), (), sizes, fname, parameters)
tune(execution_handler, 30, 1000, lambda : 64*np.random.randint(low=10, high=100000, size=1), ())
2014-10-05 06:33:50 +02:00
#Reduction
if operation=='reduction':
def execution_handler(sizes, fname=os.devnull, parameters=None):
x = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0], context=ctx, dtype=datatype)
s = vcl.Scalar(0, context=ctx, dtype=datatype)
return execute(device, vcl.Assign(s, vcl.Dot(x,y)), (), sizes, fname, parameters)
tune(execution_handler, 50, 1000, lambda : 64*np.random.randint(low=10, high=100000, size=1), ())
2014-09-29 03:01:33 +02:00
#Matrix AXPY
if operation=='matrix-axpy':
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix(sizes, context=ctx, dtype=datatype)
B = vcl.Matrix(sizes, context=ctx, dtype=datatype)
C = vcl.Matrix(sizes, context=ctx, dtype=datatype)
return execute(device, vcl.Assign(C,A+B), (), sizes, fname, parameters)
tune(execution_handler, 50, 1000, lambda : 64*np.random.randint(low=5, high=100, size=2), ())
2014-09-29 03:01:33 +02:00
#Row-wise reduction
if operation=='row-wise-reduction':
layouts = map_to_list(str,p['layout'])
2014-09-29 03:01:33 +02:00
if 'all' in layouts:
layouts = ['N', 'T']
for A_trans in layouts:
def execution_handler(sizes, fname=os.devnull, parameters=None):
A = vcl.Matrix(sizes if A_trans=='N' else sizes[::-1], context=ctx, dtype=datatype, layout=vcl.COL_MAJOR)
x = vcl.Vector(sizes[1] if A_trans=='N' else sizes[0], context=ctx, dtype=datatype)
y = vcl.Vector(sizes[0] if A_trans=='N' else sizes[1], context=ctx, dtype=datatype)
LHS = A if A_trans=='N' else A.T
return execute(device, vcl.Assign(y, LHS*x), (), sizes, fname, parameters)
tune(execution_handler, 50, 1000, lambda : 64*np.random.randint(low=5, high=100, size=2), (A_trans,))
2014-09-29 03:01:33 +02:00
#Matrix Product
if operation=='matrix-product':
layouts = map_to_list(str,p['layout'])
2014-09-29 03:01:33 +02:00
if 'all' in layouts:
layouts = ['NN', 'NT', 'TN', 'TT']
for layout in layouts:
2014-09-30 10:11:22 +02:00
def execution_handler(sizes, fname=os.devnull, parameters=None):
2014-09-29 03:01:33 +02:00
A_trans = layout[0]
B_trans = layout[1]
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
B = vcl.Matrix((sizes[1], sizes[2]) if B_trans=='N' else (sizes[2],sizes[1]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
LHS = A if A_trans=='N' else A.T
RHS = B if B_trans=='N' else B.T
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
return execute(device, vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans), sizes, fname, parameters)
tune(execution_handler, 50, 2000, lambda : 64*np.random.randint(low=1, high=40, size=3),(layout[0], layout[1]))
2014-09-29 03:01:33 +02:00
dname = misc_tools.sanitize_string(device.name)
json_out["version"] = "1.0"
json.dump(json_out, open(dname + '.json','w'))
2014-09-29 03:01:33 +02:00
2014-09-02 22:03:20 -04:00
if __name__ == "__main__":
parser = argparse.ArgumentParser()
2014-09-29 03:01:33 +02:00
subparsers = parser.add_subparsers(dest='action')
print_devices_parser = subparsers.add_parser('list-devices', help='list the devices available')
tune_parser = subparsers.add_parser('tune', help='tune using a specific configuration file')
tune_parser.add_argument("--config", default="config.ini", required=False, type=str)
tune_parser.add_argument("--device", default=0, required=False, type=str)
2014-09-29 03:01:33 +02:00
tune_parser.add_argument("--viennacl-root", default='', required=False, type=str)
args = parser.parse_args()
devices = [d for platform in cl.get_platforms() for d in platform.get_devices()]
2014-09-29 03:01:33 +02:00
if(args.action=='list-devices'):
print("----------------")
print("Devices available:")
print("----------------")
for (i, d) in enumerate(devices):
print 'Device', i, '|', cl.device_type.to_string(d.type), '|', d.name, 'on', d.platform.name
2014-09-29 03:01:33 +02:00
print("----------------")
else:
print("------")
print("Auto-tuning")
print("------")
do_tuning(args.config, args.viennacl_root, devices[args.device])