Files
triton/include/atidlas/backend/parse.h

154 lines
6.0 KiB
C
Raw Normal View History

#ifndef ATIDLAS_BACKEND_PARSE_H
#define ATIDLAS_BACKEND_PARSE_H
#include <set>
#include "atidlas/backend/mapped_object.h"
#include "atidlas/backend/binder.h"
#include "atidlas/symbolic/expression.h"
namespace atidlas
{
namespace detail
{
bool is_node_leaf(op_element const & op);
bool is_scalar_reduction(symbolic_expression_node const & node);
bool is_vector_reduction(symbolic_expression_node const & node);
bool is_elementwise_operator(op_element const & op);
bool is_elementwise_function(op_element const & op);
}
class scalar;
/** @brief base functor class for traversing a symbolic_expression */
class traversal_functor
{
public:
void call_before_expansion(symbolic_expression const &, int_t) const { }
void call_after_expansion(symbolic_expression const &, int_t) const { }
};
/** @brief Recursively execute a functor on a symbolic_expression */
template<class Fun>
inline void traverse(atidlas::symbolic_expression const & symbolic_expression, int_t root_idx, Fun const & fun, bool inspect)
{
2015-01-16 07:31:39 -05:00
symbolic_expression_node const & root_node = symbolic_expression.tree()[root_idx];
bool recurse = detail::is_node_leaf(root_node.op)?inspect:true;
fun.call_before_expansion(symbolic_expression, root_idx);
//Lhs:
if (recurse)
{
if (root_node.lhs.type_family==COMPOSITE_OPERATOR_FAMILY)
traverse(symbolic_expression, root_node.lhs.node_index, fun, inspect);
if (root_node.lhs.type_family != INVALID_TYPE_FAMILY)
fun(symbolic_expression, root_idx, LHS_NODE_TYPE);
}
//Self:
fun(symbolic_expression, root_idx, PARENT_NODE_TYPE);
//Rhs:
if (recurse && root_node.rhs.type_family!=INVALID_TYPE_FAMILY)
{
if (root_node.rhs.type_family==COMPOSITE_OPERATOR_FAMILY)
traverse(symbolic_expression, root_node.rhs.node_index, fun, inspect);
if (root_node.rhs.type_family != INVALID_TYPE_FAMILY)
fun(symbolic_expression, root_idx, RHS_NODE_TYPE);
}
fun.call_after_expansion(symbolic_expression, root_idx);
}
class filter_fun : public traversal_functor
{
public:
typedef bool (*pred_t)(symbolic_expression_node const & node);
filter_fun(pred_t pred, std::vector<size_t> & out);
void operator()(atidlas::symbolic_expression const & symbolic_expression, size_t root_idx, leaf_t) const;
private:
pred_t pred_;
std::vector<size_t> & out_;
};
class filter_elements_fun : public traversal_functor
{
public:
filter_elements_fun(symbolic_expression_node_subtype subtype, std::vector<lhs_rhs_element> & out);
void operator()(atidlas::symbolic_expression const & symbolic_expression, size_t root_idx, leaf_t) const;
private:
symbolic_expression_node_subtype subtype_;
std::vector<lhs_rhs_element> & out_;
};
std::vector<size_t> filter_nodes(bool (*pred)(symbolic_expression_node const & node),
atidlas::symbolic_expression const & symbolic_expression,
bool inspect);
std::vector<lhs_rhs_element> filter_elements(symbolic_expression_node_subtype subtype,
atidlas::symbolic_expression const & symbolic_expression);
const char * evaluate(operation_node_type type);
const char * operator_string(operation_node_type type);
/** @brief functor for generating the expression string from a symbolic_expression */
class evaluate_expression_traversal: public traversal_functor
{
private:
std::map<std::string, std::string> const & accessors_;
std::string & str_;
mapping_type const & mapping_;
public:
evaluate_expression_traversal(std::map<std::string, std::string> const & accessors, std::string & str, mapping_type const & mapping);
void call_before_expansion(atidlas::symbolic_expression const & symbolic_expression, int_t root_idx) const;
void call_after_expansion(symbolic_expression const & /*symbolic_expression*/, int_t /*root_idx*/) const;
void operator()(atidlas::symbolic_expression const & symbolic_expression, int_t root_idx, leaf_t leaf) const;
};
std::string evaluate(leaf_t leaf, std::map<std::string, std::string> const & accessors,
atidlas::symbolic_expression const & symbolic_expression, int_t root_idx, mapping_type const & mapping);
void evaluate(kernel_generation_stream & stream, leaf_t leaf, std::map<std::string, std::string> const & accessors,
symbolic_expressions_container const & symbolic_expressions, std::vector<mapping_type> const & mappings);
/** @brief functor for fetching or writing-back the elements in a symbolic_expression */
class process_traversal : public traversal_functor
{
public:
2015-01-17 10:48:02 -05:00
process_traversal(std::map<std::string, std::string> const & accessors, kernel_generation_stream & stream,
mapping_type const & mapping, std::set<std::string> & already_processed);
void operator()(symbolic_expression const & symbolic_expression, int_t root_idx, leaf_t leaf) const;
private:
2015-01-17 10:48:02 -05:00
std::map<std::string, std::string> accessors_;
kernel_generation_stream & stream_;
mapping_type const & mapping_;
std::set<std::string> & already_processed_;
};
2015-01-17 10:48:02 -05:00
void process(kernel_generation_stream & stream, leaf_t leaf, std::map<std::string, std::string> const & accessors,
atidlas::symbolic_expression const & symbolic_expression, size_t root_idx, mapping_type const & mapping, std::set<std::string> & already_processed);
2015-01-17 10:48:02 -05:00
void process(kernel_generation_stream & stream, leaf_t leaf, std::map<std::string, std::string> const & accessors,
symbolic_expressions_container const & symbolic_expressions, std::vector<mapping_type> const & mappings);
class symbolic_expression_representation_functor : public traversal_functor{
private:
static void append_id(char * & ptr, unsigned int val);
2015-01-18 14:52:45 -05:00
void append(cl_mem h, numeric_type dtype, char prefix) const;
void append(lhs_rhs_element const & lhs_rhs) const;
public:
symbolic_expression_representation_functor(symbolic_binder & binder, char *& ptr);
void append(char*& p, const char * str) const;
void operator()(atidlas::symbolic_expression const & symbolic_expression, int_t root_idx, leaf_t leaf_t) const;
private:
symbolic_binder & binder_;
char *& ptr_;
};
}
#endif