Files
triton/master/.doctrees/getting-started/tutorials/02-fused-softmax.doctree

347 lines
33 KiB
Plaintext
Raw Normal View History

2022-06-05 21:05:02 +00:00
<EFBFBD><05><><EFBFBD><00>sphinx.addnodes<65><73>document<6E><74><EFBFBD>)<29><>}<7D>(<28> rawsource<63><65><00><>children<65>]<5D>(<28>docutils.nodes<65><73>comment<6E><74><EFBFBD>)<29><>}<7D>(h<05> DO NOT EDIT.<2E>h]<5D>h <09>Text<78><74><EFBFBD><EFBFBD> DO NOT EDIT.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hh<06>parent<6E>h uba<62>
attributes<EFBFBD>}<7D>(<28>ids<64>]<5D><>classes<65>]<5D><>names<65>]<5D><>dupnames<65>]<5D><>backrefs<66>]<5D><> xml:space<63><65>preserve<76>u<EFBFBD>tagname<6D>h
2022-07-15 00:51:15 +00:00
hhhh<03>source<63><65>m/tmp/tmpqmwle6a_/5b04331dd2efdd23f4475823761fa975de60a514/docs/getting-started/tutorials/02-fused-softmax.rst<73><74>line<6E>Kubh )<29><>}<7D>(h<05>8THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.<2E>h]<5D>h<11>8THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhh)ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
2022-06-05 21:05:02 +00:00
hhhhh&h'h(Kubh )<29><>}<7D>(h<05>-TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:<3A>h]<5D>h<11>-TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhh7ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hhhhh&h'h(Kubh )<29><>}<7D>(h<05>/"getting-started/tutorials/02-fused-softmax.py"<22>h]<5D>h<11>/"getting-started/tutorials/02-fused-softmax.py"<22><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhhEubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hhhhh&h'h(Kubh )<29><>}<7D>(h<05>LINE NUMBERS ARE GIVEN BELOW.<2E>h]<5D>h<11>LINE NUMBERS ARE GIVEN BELOW.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhhSubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hhhhh&h'h(Kubh<00>only<6C><79><EFBFBD>)<29><>}<7D>(hhh]<5D>h <09>note<74><65><EFBFBD>)<29><>}<7D>(h<05>uClick :ref:`here <sphx_glr_download_getting-started_tutorials_02-fused-softmax.py>`
to download the full example code<64>h]<5D>h <09> paragraph<70><68><EFBFBD>)<29><>}<7D>(h<05>uClick :ref:`here <sphx_glr_download_getting-started_tutorials_02-fused-softmax.py>`
to download the full example code<64>h]<5D>(h<11>Click <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>Click <20>hhnubh<00> pending_xref<65><66><EFBFBD>)<29><>}<7D>(h<05>M:ref:`here <sphx_glr_download_getting-started_tutorials_02-fused-softmax.py>`<60>h]<5D>h <09>inline<6E><65><EFBFBD>)<29><>}<7D>(hh{h]<5D>h<11>here<72><65><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhhubah}<7D>(h]<5D>h]<5D>(<28>xref<65><66>std<74><64>std-ref<65>eh]<5D>h]<5D>h!]<5D>uh%h}hhyubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>refdoc<6F><63>*getting-started/tutorials/02-fused-softmax<61><78> refdomain<69>h<EFBFBD><68>reftype<70><65>ref<65><66> refexplicit<69><74><EFBFBD>refwarn<72><6E><EFBFBD> reftarget<65><74>?sphx_glr_download_getting-started_tutorials_02-fused-softmax.py<70>uh%hwh&h'h(K hhnubh<11>"
to download the full example code<64><65><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>"
to download the full example code<64>hhnubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K hhhubah}<7D>(h]<5D>h]<5D><>sphx-glr-download-link-note<74>ah]<5D>h]<5D>h!]<5D>uh%hfhhchhh&h'h(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>expr<70><72>html<6D>uh%hahhh&h'h(Khhubh <09>target<65><74><EFBFBD>)<29><>}<7D>(h<05>;.. _sphx_glr_getting-started_tutorials_02-fused-softmax.py:<3A>h]<5D>h}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>refid<69><64>6sphx-glr-getting-started-tutorials-02-fused-softmax-py<70>uh%h<>h(Khhhhh&h'ubh <09>section<6F><6E><EFBFBD>)<29><>}<7D>(hhh]<5D>(h <09>title<6C><65><EFBFBD>)<29><>}<7D>(h<05> Fused Softmax<61>h]<5D>h<11> Fused Softmax<61><78><EFBFBD><EFBFBD><EFBFBD>}<7D>(hh<>hh<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(Kubhm)<29><>}<7D>(h<05><>In this tutorial, you will write a fused softmax operation that is significantly faster
than PyTorch's native op for a particular class of matrices: those whose rows can fit in
the GPU's SRAM.
You will learn about:<3A>h]<5D>h<11><>In this tutorial, you will write a fused softmax operation that is significantly faster
than PyTorchs native op for a particular class of matrices: those whose rows can fit in
the GPUs SRAM.
You will learn about:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hh<>hh<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(Khh<>hhubh <09> bullet_list<73><74><EFBFBD>)<29><>}<7D>(hhh]<5D>(h <09> list_item<65><6D><EFBFBD>)<29><>}<7D>(h<05>=The benefits of kernel fusion for bandwidth-bound operations.<2E>h]<5D>hm)<29><>}<7D>(hh<>h]<5D>h<11>=The benefits of kernel fusion for bandwidth-bound operations.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hh<>hh<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(Khh<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(Nubh<62>)<29><>}<7D>(h<05>Reduction operators in Triton.
<EFBFBD>h]<5D>hm)<29><>}<7D>(h<05>Reduction operators in Triton.<2E>h]<5D>h<11>Reduction operators in Triton.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj hj ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(Khjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(Nubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>bullet<65><74>-<2D>uh%h<>h&h'h(Khh<>hhubh )<29><>}<7D>(h<05>(GENERATED FROM PYTHON SOURCE LINES 14-18<31>h]<5D>h<11>(GENERATED FROM PYTHON SOURCE LINES 14-18<31><38><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj'ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hh<>hhh&h'h(K ubh<62>)<29><>}<7D>(hhh]<5D>(h<>)<29><>}<7D>(h<05> Motivations<6E>h]<5D>h<11> Motivations<6E><73><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj:hj8hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hj5hhh&h'h(K"ubhm)<29><>}<7D>(h<05><>Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice.
Let us consider instead the case of a simple (numerically stabilized) softmax operation:<3A>h]<5D>h<11><>Custom GPU kernels for elementwise additions are educationally valuable but wont get you very far in practice.
Let us consider instead the case of a simple (numerically stabilized) softmax operation:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hjHhjFhhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K#hj5hhubh )<29><>}<7D>(h<05>(GENERATED FROM PYTHON SOURCE LINES 18-46<34>h]<5D>h<11>(GENERATED FROM PYTHON SOURCE LINES 18-46<34><36><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjTubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj5hhh&h'h(K'ubh <09> literal_block<63><6B><EFBFBD>)<29><>}<7D>(hX<>import torch
import triton
import triton.language as tl
@torch.jit.script
def naive_softmax(x):
"""Compute row-wise softmax of X using native pytorch
We subtract the maximum element in order to avoid overflows. Softmax is invariant to
this shift.
"""
# read MN elements ; write M elements
x_max = x.max(dim=1)[0]
# read MN + M elements ; write MN elements
z = x - x_max[:, None]
# read MN elements ; write MN elements
numerator = torch.exp(z)
# read MN elements ; write M elements
denominator = numerator.sum(dim=1)
# read MN + M elements ; write MN elements
ret = numerator / denominator[:, None]
# in total: read 5MN + 2M elements ; wrote 3MN + 2M elements
return ret<65>h]<5D>hX<>import torch
import triton
import triton.language as tl
@torch.jit.script
def naive_softmax(x):
"""Compute row-wise softmax of X using native pytorch
We subtract the maximum element in order to avoid overflows. Softmax is invariant to
this shift.
"""
# read MN elements ; write M elements
x_max = x.max(dim=1)[0]
# read MN + M elements ; write MN elements
z = x - x_max[:, None]
# read MN elements ; write MN elements
numerator = torch.exp(z)
# read MN elements ; write M elements
denominator = numerator.sum(dim=1)
# read MN + M elements ; write MN elements
ret = numerator / denominator[:, None]
# in total: read 5MN + 2M elements ; wrote 3MN + 2M elements
return ret<65><74><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjdubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$<24>force<63><65><EFBFBD>language<67><65>default<6C><74>highlight_args<67>}<7D>uh%jbh&h'h(K(hj5hhubh )<29><>}<7D>(h<05>(GENERATED FROM PYTHON SOURCE LINES 47-55<35>h]<5D>h<11>(GENERATED FROM PYTHON SOURCE LINES 47-55<35><35><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjwubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj5hhh&h'h(KNubhm)<29><>}<7D>(hX<>When implemented naively in PyTorch, computing :code:`y = naive_softmax(x)` for :math:`x \in R^{M \times N}`
requires reading :math:`5MN + 2M` elements from DRAM and writing back :math:`3MN + 2M` elements.
This is obviously wasteful; we'd prefer to have a custom "fused" kernel that only reads
X once and does all the necessary computations on-chip.
Doing so would require reading and writing back only :math:`MN` bytes, so we could
expect a theoretical speed-up of ~4x (i.e., :math:`(8MN + 4M) / 2MN`).
The `torch.jit.script` flags aims to perform this kind of "kernel fusion" automatically
but, as we will see later, it is still far from ideal.<2E>h]<5D>(h<11>/When implemented naively in PyTorch, computing <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>/When implemented naively in PyTorch, computing <20>hj<>hhh&Nh(Nubh <09>literal<61><6C><EFBFBD>)<29><>}<7D>(h<05>:code:`y = naive_softmax(x)`<60>h]<5D>h<11>y = naive_softmax(x)<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>y = naive_softmax(x)<29>hj<>ubah}<7D>(h]<5D>h]<5D><>code<64>ah]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubh<11> for <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> for <20>hj<>hhh&Nh(Nubh <09>math<74><68><EFBFBD>)<29><>}<7D>(h<05>:math:`x \in R^{M \times N}`<60>h]<5D>h<11>x \in R^{M \times N}<7D><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubh<11>
requires reading <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>
requires reading <20>hj<>hhh&Nh(Nubj<62>)<29><>}<7D>(h<05>:math:`5MN + 2M`<60>h]<5D>h<11>5MN + 2M<32><4D><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubh<11>% elements from DRAM and writing back <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>% elements from DRAM and writing back <20>hj<>hhh&Nh(Nubj<62>)<29><>}<7D>(h<05>:math:`3MN + 2M`<60>h]<5D>h<11>3MN + 2M<32><4D><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubh<11><> elements.
This is obviously wasteful; wed prefer to have a custom “fused” kernel that only reads
X once and does all the necessary computations on-chip.
Doing so would require reading and writing back only <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05><> elements.
This is obviously wasteful; we'd prefer to have a custom "fused" kernel that only reads
X once and does all the necessary computations on-chip.
Doing so would require reading and writing back only <20>hj<>hhh&Nh(Nubj<62>)<29><>}<7D>(h<05>
:math:`MN`<60>h]<5D>h<11>MN<4D><4E><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubh<11>@ bytes, so we could
expect a theoretical speed-up of ~4x (i.e., <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>@ bytes, so we could
expect a theoretical speed-up of ~4x (i.e., <20>hj<>hhh&Nh(Nubj<62>)<29><>}<7D>(h<05>:math:`(8MN + 4M) / 2MN`<60>h]<5D>h<11>(8MN + 4M) / 2MN<4D><4E><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubh<11>).
The <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>).
The <20>hj<>hhh&Nh(Nubh <09>title_reference<63><65><EFBFBD>)<29><>}<7D>(h<05>`torch.jit.script`<60>h]<5D>h<11>torch.jit.script<70><74><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%jhj<>ubh<11>| flags aims to perform this kind of “kernel fusion” automatically
but, as we will see later, it is still far from ideal.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>x flags aims to perform this kind of "kernel fusion" automatically
but, as we will see later, it is still far from ideal.<2E>hj<>hhh&Nh(Nubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(KOhj5hhubh )<29><>}<7D>(h<05>(GENERATED FROM PYTHON SOURCE LINES 57-64<36>h]<5D>h<11>(GENERATED FROM PYTHON SOURCE LINES 57-64<36><34><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj!ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj5hhh&h'h(KYubeh}<7D>(h]<5D><> motivations<6E>ah]<5D>h]<5D><> motivations<6E>ah]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(K"ubh<62>)<29><>}<7D>(hhh]<5D>(h<>)<29><>}<7D>(h<05>Compute Kernel<65>h]<5D>h<11>Compute Kernel<65><6C><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj<hj:hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hj7hhh&h'h(K[ubhm)<29><>}<7D>(hX|Our softmax kernel works as follows: each program loads a row of the input matrix X,
normalizes it and writes back the result to the output Y.
Note that one important limitation of Triton is that each block must have a
power-of-two number of elements, so we need to internally "pad" each row and guard the
memory operations properly if we want to handle any possible input shapes:<3A>h]<5D>hX<>Our softmax kernel works as follows: each program loads a row of the input matrix X,
normalizes it and writes back the result to the output Y.
Note that one important limitation of Triton is that each block must have a
power-of-two number of elements, so we need to internally “pad” each row and guard the
memory operations properly if we want to handle any possible input shapes:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hjJhjHhhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K\hj7hhubh )<29><>}<7D>(h<05>(GENERATED FROM PYTHON SOURCE LINES 64-93<39>h]<5D>h<11>(GENERATED FROM PYTHON SOURCE LINES 64-93<39><33><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjVubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj7hhh&h'h(Kcubjc)<29><>}<7D>(hX@triton.jit
def softmax_kernel(
output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols,
BLOCK_SIZE: tl.constexpr
):
# The rows of the softmax are independent, so we parallelize across those
row_idx = tl.program_id(0)
# The stride represents how much we need to increase the pointer to advance 1 row
row_start_ptr = input_ptr + row_idx * input_row_stride
# The block size is the next power of two greater than n_cols, so we can fit each
# row in a single block
col_offsets = tl.arange(0, BLOCK_SIZE)
input_ptrs = row_start_ptr + col_offsets
# Load the row into SRAM, using a mask since BLOCK_SIZE may be > than n_cols
row = tl.load(input_ptrs, mask=col_offsets < n_cols, other=-float('inf'))
# Substract maximum for numerical stability
row_minus_max = row - tl.max(row, axis=0)
# Note that exponentials in Triton are fast but approximate (i.e., think __expf in CUDA)
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
# Write back output to DRAM
output_row_start_ptr = output_ptr + row_idx * output_row_stride
output_ptrs = output_row_start_ptr + col_offsets
tl.store(output_ptrs, softmax_output, mask=col_offsets < n_cols)<29>h]<5D>hX@triton.jit
def softmax_kernel(
output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols,
BLOCK_SIZE: tl.constexpr
):
# The rows of the softmax are independent, so we parallelize across those
row_idx = tl.program_id(0)
# The stride represents how much we need to increase the pointer to advance 1 row
row_start_ptr = input_ptr + row_idx * input_row_stride
# The block size is the next power of two greater than n_cols, so we can fit each
# row in a single block
col_offsets = tl.arange(0, BLOCK_SIZE)
input_ptrs = row_start_ptr + col_offsets
# Load the row into SRAM, using a mask since BLOCK_SIZE may be > than n_cols
row = tl.load(input_ptrs, mask=col_offsets < n_cols, other=-float('inf'))
# Substract maximum for numerical stability
row_minus_max = row - tl.max(row, axis=0)
# Note that exponentials in Triton are fast but approximate (i.e., think __expf in CUDA)
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
# Write back output to DRAM
output_row_start_ptr = output_ptr + row_idx * output_row_stride
output_ptrs = output_row_start_ptr + col_offsets
tl.store(output_ptrs, softmax_output, mask=col_offsets < n_cols)<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjdubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$jr<00>js<00>default<6C>ju}<7D>uh%jbh&h'h(Kdhj7hhubh )<29><>}<7D>(h<05>(GENERATED FROM PYTHON SOURCE LINES 94-95<39>h]<5D>h<11>(GENERATED FROM PYTHON SOURCE LINES 94-95<39><35><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjtubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj7hhh&h'h(K<>ubhm)<29><>}<7D>(h<05>mWe can create a helper function that enqueues the kernel and its (meta-)arguments for any given input tensor.<2E>h]<5D>h<11>mWe can create a helper function that enqueues the kernel and its (meta-)arguments for any given input tensor.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj<>hj<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K<>hj7hhubh )<29><>}<7D>(h<05>)GENERATED FROM PYTHON SOURCE LINES 95-125<32>h]<5D>h<11>)GENERATED FROM PYTHON SOURCE LINES 95-125<32><35><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj7hhh&h'h(K<>ubjc)<29><>}<7D>(hX<>def softmax(x):
n_rows, n_cols = x.shape
# The block size is the smallest power of two greater than the number of columns in `x`
BLOCK_SIZE = triton.next_power_of_2(n_cols)
# Another trick we can use is to ask the compiler to use more threads per row by
# increasing the number of warps (`num_warps`) over which each row is distributed.
# You will see in the next tutorial how to auto-tune this value in a more natural
# way so you don't have to come up with manual heuristics yourself.
num_warps = 4
if BLOCK_SIZE >= 2048:
num_warps = 8
if BLOCK_SIZE >= 4096:
num_warps = 16
# Allocate output
y = torch.empty_like(x)
# Enqueue kernel. The 1D launch grid is simple: we have one kernel instance per row o
# f the input matrix
softmax_kernel[(n_rows,)](
y,
x,
x.stride(0),
y.stride(0),
n_cols,
num_warps=num_warps,
BLOCK_SIZE=BLOCK_SIZE,
)
return y<>h]<5D>hX<>def softmax(x):
n_rows, n_cols = x.shape
# The block size is the smallest power of two greater than the number of columns in `x`
BLOCK_SIZE = triton.next_power_of_2(n_cols)
# Another trick we can use is to ask the compiler to use more threads per row by
# increasing the number of warps (`num_warps`) over which each row is distributed.
# You will see in the next tutorial how to auto-tune this value in a more natural
# way so you don't have to come up with manual heuristics yourself.
num_warps = 4
if BLOCK_SIZE >= 2048:
num_warps = 8
if BLOCK_SIZE >= 4096:
num_warps = 16
# Allocate output
y = torch.empty_like(x)
# Enqueue kernel. The 1D launch grid is simple: we have one kernel instance per row o
# f the input matrix
softmax_kernel[(n_rows,)](
y,
x,
x.stride(0),
y.stride(0),
n_cols,
num_warps=num_warps,
BLOCK_SIZE=BLOCK_SIZE,
)
return y<><79><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$jr<00>js<00>default<6C>ju}<7D>uh%jbh&h'h(K<>hj7hhubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 126-128<32>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 126-128<32><38><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj7hhh&h'h(K<>ubeh}<7D>(h]<5D><>compute-kernel<65>ah]<5D>h]<5D><>compute kernel<65>ah]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(K[ubh<62>)<29><>}<7D>(hhh]<5D>(h<>)<29><>}<7D>(h<05> Unit Test<73>h]<5D>h<11> Unit Test<73><74><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj<>hj<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hj<>hhh&h'h(K<>ubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 130-132<33>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 130-132<33><32><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj<>hhh&h'h(K<>ubhm)<29><>}<7D>(h<05><>We make sure that we test our kernel on a matrix with an irregular number of rows and columns.
This will allow us to verify that our padding mechanism works.<2E>h]<5D>h<11><>We make sure that we test our kernel on a matrix with an irregular number of rows and columns.
This will allow us to verify that our padding mechanism works.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj<>hj<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K<>hj<>hhubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 132-139<33>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 132-139<33><39><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj<>hhh&h'h(K<>ubjc)<29><>}<7D>(h<05><>torch.manual_seed(0)
x = torch.randn(1823, 781, device='cuda')
y_triton = softmax(x)
y_torch = torch.softmax(x, axis=1)
assert torch.allclose(y_triton, y_torch), (y_triton, y_torch)<29>h]<5D>h<11><>torch.manual_seed(0)
x = torch.randn(1823, 781, device='cuda')
y_triton = softmax(x)
y_torch = torch.softmax(x, axis=1)
assert torch.allclose(y_triton, y_torch), (y_triton, y_torch)<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$jr<00>js<00>default<6C>ju}<7D>uh%jbh&h'h(K<>hj<>hhubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 140-141<34>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 140-141<34><31><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj<>hhh&h'h(K<>ubhm)<29><>}<7D>(h<05>'As expected, the results are identical.<2E>h]<5D>h<11>'As expected, the results are identical.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hjhjhhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K<>hj<>hhubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 143-147<34>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 143-147<34><37><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj+ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hj<>hhh&h'h(K<>ubeh}<7D>(h]<5D><> unit-test<73>ah]<5D>h]<5D><> unit test<73>ah]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(K<>ubh<62>)<29><>}<7D>(hhh]<5D>(h<>)<29><>}<7D>(h<05> Benchmark<72>h]<5D>h<11> Benchmark<72><6B><EFBFBD><EFBFBD><EFBFBD>}<7D>(hjFhjDhhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hjAhhh&h'h(K<>ubhm)<29><>}<7D>(h<05><>Here we will benchmark our operation as a function of the number of columns in the input matrix -- assuming 4096 rows.
We will then compare its performance against (1) :code:`torch.softmax` and (2) the :code:`naive_softmax` defined above.<2E>h]<5D>(h<11><>Here we will benchmark our operation as a function of the number of columns in the input matrix assuming 4096 rows.
We will then compare its performance against (1) <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05><>Here we will benchmark our operation as a function of the number of columns in the input matrix -- assuming 4096 rows.
We will then compare its performance against (1) <20>hjRhhh&Nh(Nubj<62>)<29><>}<7D>(h<05>:code:`torch.softmax`<60>h]<5D>h<11> torch.softmax<61><78><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> torch.softmax<61>hj[ubah}<7D>(h]<5D>h]<5D>j<EFBFBD>ah]<5D>h]<5D>h!]<5D>uh%j<>hjRubh<11> and (2) the <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> and (2) the <20>hjRhhh&Nh(Nubj<62>)<29><>}<7D>(h<05>:code:`naive_softmax`<60>h]<5D>h<11> naive_softmax<61><78><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> naive_softmax<61>hjoubah}<7D>(h]<5D>h]<5D>j<EFBFBD>ah]<5D>h]<5D>h!]<5D>uh%j<>hjRubh<11> defined above.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> defined above.<2E>hjRhhh&Nh(Nubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(K<>hjAhhubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 147-186<38>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 147-186<38><36><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hjAhhh&h'h(K<>ubjc)<29><>}<7D>(hX#@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['N'], # argument names to use as an x-axis for the plot
x_vals=[
128 * i for i in range(2, 100)
], # different possible values for `x_name`
line_arg='provider', # argument name whose value corresponds to a different line in the plot
line_vals=[
'triton',
'torch-native',
'torch-jit',
], # possible values for `line_arg``
line_names=[
"Triton",
"Torch (native)",
"Torch (jit)",
], # label name for the lines
styles=[('blue', '-'), ('green', '-'), ('green', '--')], # line styles
ylabel="GB/s", # label name for the y-axis
plot_name="softmax-performance", # name for the plot. Used also as a file name for saving the plot.
args={'M': 4096}, # values for function arguments not in `x_names` and `y_name`
)
)
def benchmark(M, N, provider):
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
if provider == 'torch-native':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.softmax(x, axis=-1))
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: softmax(x))
if provider == 'torch-jit':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: naive_softmax(x))
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
return gbps(ms), gbps(max_ms), gbps(min_ms)
benchmark.run(show_plots=True, print_data=True)<29>h]<5D>hX#@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=['N'], # argument names to use as an x-axis for the plot
x_vals=[
128 * i for i in range(2, 100)
], # different possible values for `x_name`
line_arg='provider', # argument name whose value corresponds to a different line in the plot
line_vals=[
'triton',
'torch-native',
'torch-jit',
], # possible values for `line_arg``
line_names=[
"Triton",
"Torch (native)",
"Torch (jit)",
], # label name for the lines
styles=[('blue', '-'), ('green', '-'), ('green', '--')], # line styles
ylabel="GB/s", # label name for the y-axis
plot_name="softmax-performance", # name for the plot. Used also as a file name for saving the plot.
args={'M': 4096}, # values for function arguments not in `x_names` and `y_name`
)
)
def benchmark(M, N, provider):
x = torch.randn(M, N, device='cuda', dtype=torch.float32)
if provider == 'torch-native':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.softmax(x, axis=-1))
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: softmax(x))
if provider == 'torch-jit':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: naive_softmax(x))
gbps = lambda ms: 2 * x.nelement() * x.element_size() * 1e-9 / (ms * 1e-3)
return gbps(ms), gbps(max_ms), gbps(min_ms)
benchmark.run(show_plots=True, print_data=True)<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$jr<00>js<00>default<6C>ju}<7D>uh%jbh&h'h(K<>hjAhhubh <09>image<67><65><EFBFBD>)<29><>}<7D>(h<05><>.. image:: /getting-started/tutorials/images/sphx_glr_02-fused-softmax_001.png
:alt: 02 fused softmax
:class: sphx-glr-single-img
<EFBFBD>h]<5D>h}<7D>(h]<5D>h]<5D><>sphx-glr-single-img<6D>ah]<5D>h]<5D>h!]<5D><>alt<6C><74>02 fused softmax<61><78>uri<72><69>Bgetting-started/tutorials/images/sphx_glr_02-fused-softmax_001.png<6E><67>
candidates<EFBFBD>}<7D><>*<2A>j<EFBFBD>suh%j<>hjAhhh&h'h(Nubhm)<29><>}<7D>(h<05>Out:<3A>h]<5D>h<11>Out:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj<>hj<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D><>sphx-glr-script-out<75>ah]<5D>h]<5D>h!]<5D>uh%hlh&h'h(MhjAhhubjc)<29><>}<7D>(hX<>softmax-performance:
N Triton Torch (native) Torch (jit)
2022-07-15 00:51:15 +00:00
0 256.0 512.000001 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
2022-06-05 21:05:02 +00:00
.. ... ... ... ...
2022-07-15 00:51:15 +00:00
93 12160.0 812.359066 406.179533 198.733401
94 12288.0 812.429770 415.661740 198.995960
95 12416.0 810.840807 412.149375 198.655991
96 12544.0 810.925276 412.971190 198.913776
97 12672.0 811.007961 412.097543 198.971549
2022-06-05 21:05:02 +00:00
[98 rows x 4 columns]<5D>h]<5D>hX<>softmax-performance:
N Triton Torch (native) Torch (jit)
2022-07-15 00:51:15 +00:00
0 256.0 512.000001 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
2022-06-05 21:05:02 +00:00
.. ... ... ... ...
2022-07-15 00:51:15 +00:00
93 12160.0 812.359066 406.179533 198.733401
94 12288.0 812.429770 415.661740 198.995960
95 12416.0 810.840807 412.149375 198.655991
96 12544.0 810.925276 412.971190 198.913776
97 12672.0 811.007961 412.097543 198.971549
2022-06-05 21:05:02 +00:00
[98 rows x 4 columns]<5D><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>j<EFBFBD>ah]<5D>h]<5D>h!]<5D>h#h$jr<00>js<00>none<6E>ju}<7D>uh%jbh&h'h(MhjAhhubh )<29><>}<7D>(h<05>*GENERATED FROM PYTHON SOURCE LINES 187-192<39>h]<5D>h<11>*GENERATED FROM PYTHON SOURCE LINES 187-192<39><32><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h#h$uh%h
hjAhhh&h'h(M+ubhm)<29><>}<7D>(h<05>#In the above plot, we can see that:<3A>h]<5D>h<11>#In the above plot, we can see that:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hj<>hj<>hhh&Nh(Nubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(M,hjAhhubh <09> block_quote<74><65><EFBFBD>)<29><>}<7D>(hhh]<5D>h<EFBFBD>)<29><>}<7D>(hhh]<5D>(h<>)<29><>}<7D>(h<05>tTriton is 4x faster than the Torch JIT. This confirms our suspicions that the Torch JIT does not do any fusion here.<2E>h]<5D>hm)<29><>}<7D>(hjh]<5D>h<11>tTriton is 4x faster than the Torch JIT. This confirms our suspicions that the Torch JIT does not do any fusion here.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hjhjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(M.hj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hj<>ubh<62>)<29><>}<7D>(h<05><>Triton is noticeably faster than :code:`torch.softmax` -- in addition to being **easier to read, understand and maintain**.
Note however that the PyTorch `softmax` operation is more general and will works on tensors of any shape.
<EFBFBD>h]<5D>hm)<29><>}<7D>(h<05><>Triton is noticeably faster than :code:`torch.softmax` -- in addition to being **easier to read, understand and maintain**.
Note however that the PyTorch `softmax` operation is more general and will works on tensors of any shape.<2E>h]<5D>(h<11>!Triton is noticeably faster than <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>!Triton is noticeably faster than <20>hjubj<62>)<29><>}<7D>(h<05>:code:`torch.softmax`<60>h]<5D>h<11> torch.softmax<61><78><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> torch.softmax<61>hj"ubah}<7D>(h]<5D>h]<5D>j<EFBFBD>ah]<5D>h]<5D>h!]<5D>uh%j<>hjubh<11> in addition to being <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> -- in addition to being <20>hjubh <09>strong<6E><67><EFBFBD>)<29><>}<7D>(h<05>+**easier to read, understand and maintain**<2A>h]<5D>h<11>'easier to read, understand and maintain<69><6E><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj8ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j6hjubh<11> .
Note however that the PyTorch <20><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> .
2022-07-15 00:51:15 +00:00
Note however that the PyTorch <20>hjubj)<29><>}<7D>(h<05> `softmax`<60>h]<5D>h<11>softmax<61><78><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjKubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%jhjubh<11>B operation is more general and will works on tensors of any shape.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>B operation is more general and will works on tensors of any shape.<2E>hjubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(M/hjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%h<>hj<>ubeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>j%j&uh%h<>h&h'h(M.hj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j<>hjAhhh&Nh(Nubhm)<29><>}<7D>(h<05>B**Total running time of the script:** ( 3 minutes 31.827 seconds)<29>h]<5D>(j7)<29><>}<7D>(h<05>%**Total running time of the script:**<2A>h]<5D>h<11>!Total running time of the script:<3A><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjzubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%j6hjvubh<11> ( 3 minutes 31.827 seconds)<29><><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05> ( 3 minutes 31.827 seconds)<29>hjvhhh&Nh(Nubeh}<7D>(h]<5D>h]<5D><>sphx-glr-timing<6E>ah]<5D>h]<5D>h!]<5D>uh%hlh&h'h(M5hjAhhubh<62>)<29><>}<7D>(h<05>D.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:<3A>h]<5D>h}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>hČ?sphx-glr-download-getting-started-tutorials-02-fused-softmax-py<70>uh%h<>h(M8hjAhhh&h'ubhb)<29><>}<7D>(hhh]<5D>h <09> container<65><72><EFBFBD>)<29><>}<7D>(hX).. container:: sphx-glr-download sphx-glr-download-python
2022-06-05 21:05:02 +00:00
:download:`Download Python source code: 02-fused-softmax.py <02-fused-softmax.py>`
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download Jupyter notebook: 02-fused-softmax.ipynb <02-fused-softmax.ipynb>`<60>h]<5D>(j<>)<29><>}<7D>(h<05>R:download:`Download Python source code: 02-fused-softmax.py <02-fused-softmax.py>`<60>h]<5D>hm)<29><>}<7D>(hj<>h]<5D>h<00>download_reference<63><65><EFBFBD>)<29><>}<7D>(hj<>h]<5D>j<EFBFBD>)<29><>}<7D>(hj<>h]<5D>h<11>0Download Python source code: 02-fused-softmax.py<70><79><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>(h<><68>download<61>eh]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>h<06>reftype<70>j<EFBFBD><00> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD><68>02-fused-softmax.py<70><79>filename<6D><65>4d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py<70>uh%j<>h&h'h(MDhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(MDhj<>ubah}<7D>(h]<5D>h]<5D>(<28>sphx-glr-download<61><64>sphx-glr-download-python<6F>eh]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubj<62>)<29><>}<7D>(h<05>V:download:`Download Jupyter notebook: 02-fused-softmax.ipynb <02-fused-softmax.ipynb>`<60>h]<5D>hm)<29><>}<7D>(hj<>h]<5D>j<EFBFBD>)<29><>}<7D>(hj<>h]<5D>j<EFBFBD>)<29><>}<7D>(hj<>h]<5D>h<11>1Download Jupyter notebook: 02-fused-softmax.ipynb<6E><62><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>(h<><68>download<61>eh]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>refdoc<6F>h<EFBFBD><68> refdomain<69>h<06>reftype<70>j<EFBFBD><00> refexplicit<69><74><EFBFBD>refwarn<72><6E>h<EFBFBD><68>02-fused-softmax.ipynb<6E>j<EFBFBD><00>7034d953b6214fedce6ea03803c712b89/02-fused-softmax.ipynb<6E>uh%j<>h&h'h(MJhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlh&h'h(MJhj<>ubah}<7D>(h]<5D>h]<5D>(<28>sphx-glr-download<61><64>sphx-glr-download-jupyter<65>eh]<5D>h]<5D>h!]<5D>uh%j<>hj<>ubeh}<7D>(h]<5D>h]<5D>(<28>sphx-glr-footer<65><72>class<73><73>sphx-glr-footer-example<6C>eh]<5D>h]<5D>h!]<5D>uh%j<>hj<>hhh&Nh(Nubah}<7D>(h]<5D>j<EFBFBD>ah]<5D>h]<5D><>?sphx_glr_download_getting-started_tutorials_02-fused-softmax.py<70>ah]<5D>h!]<5D>h<EFBFBD><68>html<6D>uh%hahhh&h'h(M;hjA<00>expect_referenced_by_name<6D>}<7D>jj<>s<>expect_referenced_by_id<69>}<7D>j<EFBFBD>j<>subhb)<29><>}<7D>(hhh]<5D>hm)<29><>}<7D>(h<05>I`Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_<>h]<5D>(h <09> reference<63><65><EFBFBD>)<29><>}<7D>(hj+h]<5D>h<11>#Gallery generated by Sphinx-Gallery<72><79><EFBFBD><EFBFBD><EFBFBD>}<7D>(h<05>#Gallery generated by Sphinx-Gallery<72>hj/ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>name<6D><65>#Gallery generated by Sphinx-Gallery<72><79>refuri<72><69> https://sphinx-gallery.github.io<69>uh%j-hj)ubh<62>)<29><>}<7D>(h<05># <https://sphinx-gallery.github.io><3E>h]<5D>h}<7D>(h]<5D><>#gallery-generated-by-sphinx-gallery<72>ah]<5D>h]<5D><>#gallery generated by sphinx-gallery<72>ah]<5D>h!]<5D><>refuri<72>j@uh%h<><68>
referenced<EFBFBD>Khj)ubeh}<7D>(h]<5D>h]<5D><>sphx-glr-signature<72>ah]<5D>h]<5D>h!]<5D>uh%hlh&h'h(MQhj&hhubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>h<EFBFBD><68>html<6D>uh%hahhh&h'h(MMhjAubeh}<7D>(h]<5D><> benchmark<72>ah]<5D>h]<5D><> benchmark<72>ah]<5D>h!]<5D>uh%h<>hh<>hhh&h'h(K<>ubeh}<7D>(h]<5D>(<28> fused-softmax<61>h<EFBFBD>eh]<5D><>sphx-glr-example-title<6C>ah]<5D>(<28> fused softmax<61><78>6sphx_glr_getting-started_tutorials_02-fused-softmax.py<70>eh]<5D>h!]<5D>uh%h<>hhhhh&h'h(Kj"}<7D>jlh<>sj$}<7D>h<EFBFBD>h<EFBFBD>subeh}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>source<63>h'uh%h<01>current_source<63>N<EFBFBD> current_line<6E>N<EFBFBD>settings<67><73>docutils.frontend<6E><64>Values<65><73><EFBFBD>)<29><>}<7D>(h<>N<EFBFBD> generator<6F>N<EFBFBD> datestamp<6D>N<EFBFBD> source_link<6E>N<EFBFBD>
source_url<EFBFBD>N<EFBFBD> toc_backlinks<6B><73>entry<72><79>footnote_backlinks<6B>K<01> sectnum_xform<72>K<01>strip_comments<74>N<EFBFBD>strip_elements_with_classes<65>N<EFBFBD> strip_classes<65>N<EFBFBD> report_level<65>K<02>
halt_level<EFBFBD>K<05>exit_status_level<65>K<05>debug<75>N<EFBFBD>warning_stream<61>N<EFBFBD> traceback<63><6B><EFBFBD>input_encoding<6E><67> utf-8-sig<69><67>input_encoding_error_handler<65><72>strict<63><74>output_encoding<6E><67>utf-8<><38>output_encoding_error_handler<65>j<EFBFBD><00>error_encoding<6E><67>utf-8<><38>error_encoding_error_handler<65><72>backslashreplace<63><65> language_code<64><65>en<65><6E>record_dependencies<65>N<EFBFBD>config<69>N<EFBFBD> id_prefix<69>h<06>auto_id_prefix<69><78>id<69><64> dump_settings<67>N<EFBFBD>dump_internals<6C>N<EFBFBD>dump_transforms<6D>N<EFBFBD>dump_pseudo_xml<6D>N<EFBFBD>expose_internals<6C>N<EFBFBD>strict_visitor<6F>N<EFBFBD>_disable_config<69>N<EFBFBD>_source<63>h'<27> _destination<6F>N<EFBFBD> _config_files<65>]<5D><>pep_references<65>N<EFBFBD> pep_base_url<72><6C> https://www.python.org/dev/peps/<2F><>pep_file_url_template<74><65>pep-%04d<34><64>rfc_references<65>N<EFBFBD> rfc_base_url<72><6C>https://tools.ietf.org/html/<2F><> tab_width<74>K<08>trim_footnote_reference_space<63><65><EFBFBD>file_insertion_enabled<65><64><EFBFBD> raw_enabled<65>K<01>syntax_highlight<68><74>long<6E><67> smart_quotes<65><73><EFBFBD>smartquotes_locales<65>]<5D><>character_level_inline_markup<75><70><EFBFBD>doctitle_xform<72><6D><EFBFBD> docinfo_xform<72>K<01>sectsubtitle_xform<72><6D><EFBFBD>embed_stylesheet<65><74><EFBFBD>cloak_email_addresses<65><73><EFBFBD>env<6E>Nub<75>reporter<65>N<EFBFBD>indirect_targets<74>]<5D><>substitution_defs<66>}<7D><>substitution_names<65>}<7D><>refnames<65>}<7D><>refids<64>}<7D>(h<>]<5D>h<EFBFBD>aj<61>]<5D>j<EFBFBD>au<61>nameids<64>}<7D>(jlh<>jkjgj4j1j<>j<>j>j;jbj_jj<>jJjGu<> nametypes<65>}<7D>(jl<00>jkNj4Nj<4E>Nj>NjbNj<00>jJ<00>uh}<7D>(h<>h<EFBFBD>jgh<>j1j5j<>j7j;j<>j_jAj<>j<>jGjAu<> footnote_refs<66>}<7D><> citation_refs<66>}<7D><> autofootnotes<65>]<5D><>autofootnote_refs<66>]<5D><>symbol_footnotes<65>]<5D><>symbol_footnote_refs<66>]<5D><> footnotes<65>]<5D><> citations<6E>]<5D><>autofootnote_start<72>K<01>symbol_footnote_start<72>K<00>
id_counter<EFBFBD><EFBFBD> collections<6E><73>Counter<65><72><EFBFBD>}<7D><><EFBFBD>R<EFBFBD><52>parse_messages<65>]<5D><>transform_messages<65>]<5D>(h <09>system_message<67><65><EFBFBD>)<29><>}<7D>(hhh]<5D>hm)<29><>}<7D>(hhh]<5D>h<11>\Hyperlink target "sphx-glr-getting-started-tutorials-02-fused-softmax-py" is not referenced.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlhj<>ubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>level<65>K<01>type<70><65>INFO<46><4F>source<63>h'<27>line<6E>Kuh%j<>ubj<62>)<29><>}<7D>(hhh]<5D>hm)<29><>}<7D>(hhh]<5D>h<11>eHyperlink target "sphx-glr-download-getting-started-tutorials-02-fused-softmax-py" is not referenced.<2E><><EFBFBD><EFBFBD><EFBFBD>}<7D>(hhhjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D>uh%hlhjubah}<7D>(h]<5D>h]<5D>h]<5D>h]<5D>h!]<5D><>level<65>K<01>type<70>j<00>source<63>h'<27>line<6E>M8uh%j<>ube<62> transformer<65>N<EFBFBD>
decoration<EFBFBD>Nhhub.