Files
triton/lib/backend/templates/mreduction.cpp

429 lines
17 KiB
C++
Raw Normal View History

#include <iostream>
#include "isaac/backend/stream.h"
#include "isaac/backend/keywords.h"
#include "isaac/backend/templates/mreduction.h"
#include "isaac/tools/to_string.hpp"
#include "isaac/tools/make_map.hpp"
#include "isaac/tools/make_vector.hpp"
namespace isaac
{
mreduction_parameters::mreduction_parameters(unsigned int _simd_width,
unsigned int _local_size_0, unsigned int _local_size_1,
unsigned int _num_groups_0, unsigned int _num_groups_1, fetching_policy_type _fetch_policy): base::parameters_type(_simd_width, _local_size_0, _local_size_1, 1),
num_groups_0(_num_groups_0), num_groups_1(_num_groups_1), fetch_policy(_fetch_policy) { }
int mreduction::is_invalid_impl(driver::Device const &, expressions_tuple const &) const
{
2015-05-03 17:39:52 -04:00
if(reduction_type_==REDUCE_ROWS && p_.simd_width>1)
return TEMPLATE_INVALID_SIMD_WIDTH;
if (p_.fetch_policy==FETCH_FROM_LOCAL)
return TEMPLATE_INVALID_FETCHING_POLICY_TYPE;
return TEMPLATE_VALID;
}
unsigned int mreduction::lmem_usage() const
{
return (p_.local_size_0+1)*p_.local_size_1;
}
std::string mreduction::generate_impl(const char * suffix, expressions_tuple const & expressions, driver::Device const & device, std::vector<mapping_type> const & mappings) const
{
using tools::to_string;
std::vector<mapped_mreduction*> reductions;
expressions_tuple::data_type::const_iterator sit;
std::vector<mapping_type>::const_iterator mit;
for (mit = mappings.begin(), sit = expressions.data().begin(); mit != mappings.end(); ++mit, ++sit)
{
array_expression const & first_expression = *expressions.data().front();
std::vector<size_t> idx = filter_nodes(&is_reduction, first_expression, false);
for (auto & elem : idx)
reductions.push_back((mapped_mreduction*)(mit->at(mapping_key(elem, PARENT_NODE_TYPE)).get()));
}
kernel_generation_stream stream;
driver::backend_type backend = device.backend();
std::string _size_t = size_type(device);
char name[2][16] = {{"prod"}, {"reduce"}};
strcat(name[0], suffix);
strcat(name[1], suffix);
2015-01-27 02:41:27 -05:00
std::string arguments = _size_t + " M, " + _size_t + " N, " ;
for (const auto & e : reductions)
2015-02-10 16:33:38 -05:00
{
std::string numeric_type = numeric_type_to_string(lhs_most(e->array_expression().tree(), e->array_expression().root()).lhs.dtype);
if (e->is_index_reduction())
{
arguments += e->process(Global(backend).get() + " unsigned int* #name_temp, ");
arguments += e->process(Global(backend).get() + " " + to_string(numeric_type) + "* #name_temp_value,");
2015-02-10 16:33:38 -05:00
}
else
arguments += e->process(Global(backend).get() + " " + to_string(numeric_type) + "* #name_temp, ");
2015-02-10 16:33:38 -05:00
}
2015-05-13 02:20:44 -04:00
switch(backend)
{
#ifdef ISAAC_WITH_CUDA
case driver::CUDA: stream << "#include \"helper_math.h\"" << std::endl; break;
#endif
case driver::OPENCL: stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << "," << p_.local_size_1 << ",1)))" << std::endl; break;
}
stream << KernelPrefix(backend) << " void " << name[0] << "(" << arguments << generate_arguments("#scalartype", device, mappings, expressions) << ")" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
process(stream, PARENT_NODE_TYPE,
2015-02-10 16:33:38 -05:00
{{"array0", "#scalartype #namereg = #pointer[#start];"},
{"array1", "#pointer += #start;"},
{"array2", "#pointer += #start1 + #start2*#ld; "
"#ld *= #nldstride; "}}, expressions, mappings);
unsigned int local_size_0_ld = p_.local_size_0;
std::string local_size_0_ld_str = to_string(local_size_0_ld);
for (const auto & e : reductions)
stream << e->process(Local(backend).get() + " #scalartype #name_buf[" + to_string(p_.local_size_1*local_size_0_ld) + "];") << std::endl;
stream << "" << _size_t << " lid0 = " << LocalIdx0(backend) << ";" << std::endl;
stream << "" << _size_t << " gid0 = " << GlobalIdx0(backend) << ";" << std::endl;
stream << "" << _size_t << " gpid0 = " << GroupIdx0(backend) << ";" << std::endl;
stream << "" << _size_t << " gsize0 = " << GlobalSize0(backend) << ";" << std::endl;
stream << "" << _size_t << " lid1 = " << LocalIdx1(backend) <<";" << std::endl;
stream << "" << _size_t << " gid1 = " << GlobalIdx1(backend) <<";" << std::endl;
stream << "" << _size_t << " gpid1 = " << GroupIdx1(backend) << ";" << std::endl;
stream << "" << _size_t << " gsize1 = " << GlobalSize1(backend) <<";" << std::endl;
stream << "" << _size_t << " upper_bound_1 = ( M +" << p_.local_size_1 - 1 << ")/" << p_.local_size_1 << "*" << p_.local_size_1 << ";" << std::endl;
stream << "for(" << _size_t << " r = gid1; r < upper_bound_1; r += gsize1){" << std::endl;
stream.inc_tab();
for (const auto & e : reductions)
2015-05-13 02:20:44 -04:00
stream << e->process("#scalartype #name_acc = " + neutral_element((e)->root_op(), backend, "#scalartype") + ";") << std::endl;
stream << "if (r < M)" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
element_wise_loop_1D(stream, p_.fetch_policy, p_.simd_width, "c", "N", "gid0", "gsize0", device, [&](unsigned int simd_width)
{
2015-02-10 16:33:38 -05:00
std::string data_type = append_width("#scalartype",simd_width);
for (const auto & e : reductions)
{
2015-02-10 16:33:38 -05:00
std::map<std::string, std::string> accessors;
if(reduction_type_==REDUCE_COLUMNS)
{
accessors["array2"] = data_type + " #namereg = " + vload(simd_width, "#scalartype", "c*#stride1", "#pointer + r*#ld", backend)+";";
accessors["repeat"] = data_type + " #namereg = " + vload(simd_width, "#scalartype", "(c%#tuplearg0)*#stride", "#pointer + (r%#tuplearg1)*#stride ", backend)+";";
2015-02-10 16:33:38 -05:00
}
else
{
accessors["array2"] = "#scalartype #namereg = #pointer[r*#stride1 + c*#ld];";
accessors["repeat"] = "#scalartype #namereg = $VALUE{(r%#tuplearg0)*#stride, (c%#tuplearg1)*#stride};";
}
2015-02-10 16:33:38 -05:00
e->process_recursive(stream, PARENT_NODE_TYPE, accessors);
}
2015-02-10 16:33:38 -05:00
//Update accumulators
std::vector<std::string> str(simd_width);
if (simd_width==1)
str[0] = "#namereg";
else
for (unsigned int a = 0; a < simd_width; ++a)
str[a] = access_vector_type("#namereg",a);
for (auto & elem : reductions)
2015-02-10 16:33:38 -05:00
for (unsigned int a = 0; a < simd_width; ++a)
{
2015-02-10 16:33:38 -05:00
std::string value = elem->evaluate_recursive(LHS_NODE_TYPE, {{"array2", str[a]}, {"repeat", str[a]}, {"array0", "#namereg"}});
if (elem->is_index_reduction())
compute_index_reduction(stream, elem->process("#name_acc"), "c*"+to_string(simd_width) + to_string(a), elem->process("#name_acc_value"), value, elem->root_op());
else
compute_reduction(stream, elem->process("#name_acc"), value,elem->root_op());
}
2015-02-10 16:33:38 -05:00
});
stream.dec_tab();
stream << "}" << std::endl;
for (auto & expr : reductions)
stream << expr->process("#name_buf[lid1*" + local_size_0_ld_str + "+ lid0] = #name_acc;") << std::endl;
2015-02-10 16:33:38 -05:00
stream << "#pragma unroll" << std::endl;
stream << "for(" << _size_t << " stride = " << p_.local_size_0/2 << "; stride >0; stride /=2)" << std::endl;
2015-02-10 16:33:38 -05:00
stream << "{" << std::endl;
stream.inc_tab();
stream << LocalBarrier(backend) << ";" << std::endl;
stream << "if (lid0 < stride)" << std::endl;
2015-02-10 16:33:38 -05:00
stream << "{" << std::endl;
stream.inc_tab();
for (auto & e : reductions)
2015-02-10 16:33:38 -05:00
if (e->is_index_reduction())
compute_index_reduction(stream, e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0]"), e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0 + stride]")
, e->process("#name_buf_value[lid1*" + local_size_0_ld_str + " + lid0]"), e->process("#name_buf_value[lid1*" + local_size_0_ld_str + " + lid0 + stride]")
2015-02-10 16:33:38 -05:00
, e->root_op());
else
compute_reduction(stream,e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0]"), e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0 + stride]"), e->root_op());
2015-02-10 16:33:38 -05:00
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
stream << "if (lid0 == 0 && r < M)";
2015-02-10 16:33:38 -05:00
stream << "{" << std::endl;
stream.inc_tab();
if(p_.num_groups_0==1)
{
std::map<std::string, std::string> accessors;
accessors["mreduction"] = "#name_buf[lid1*" + local_size_0_ld_str + "]";
accessors["array1"] = "#pointer[r*#stride]";
evaluate(stream, PARENT_NODE_TYPE, accessors, expressions, mappings);
}
else
{
for (mapped_reduction const * e : reductions)
2015-02-10 16:33:38 -05:00
{
if (e->is_index_reduction())
stream << e->process("#name_temp_value[r + M*gpid0] = #name_buf_value[lid1*" + local_size_0_ld_str + "];") << std::endl;
stream << e->process("#name_temp[r + M*gpid0] = #name_buf[lid1*" + local_size_0_ld_str + "];") << std::endl;
}
}
2015-02-10 16:33:38 -05:00
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
if(p_.num_groups_0>1)
{
2015-02-10 16:33:38 -05:00
/////////////////////////////////////////
////////////// Kernel 2
////////////////////////////////////////
if(backend==driver::OPENCL)
stream << " __attribute__((reqd_work_group_size(" << p_.local_size_0 << "," << p_.local_size_1 << ",1)))" << std::endl;
stream << KernelPrefix(backend) << " void " << name[1] << "(" << arguments << generate_arguments("#scalartype", device, mappings, expressions) << ")" << std::endl;
2015-02-10 16:33:38 -05:00
stream << "{" << std::endl;
stream.inc_tab();
process(stream, PARENT_NODE_TYPE,
{{"array0", "#scalartype #namereg = #pointer[#start];"},
{"array1", "#pointer += #start;"},
{"array2", "#pointer += #start1 + #start2*#ld; "
"#ld *= #nldstride; "}}, expressions, mappings);
for (const auto & e : reductions)
stream << e->process(Local(backend).get() + " #scalartype #name_buf[" + to_string(p_.local_size_1*local_size_0_ld) + "];") << std::endl;
stream << _size_t << " lid0 = " << LocalIdx0(backend) << ";" << std::endl;
stream << _size_t << " lsize0 = " << LocalSize0(backend) << ";" << std::endl;
2015-02-10 16:33:38 -05:00
stream << _size_t << " lid1 = " << LocalIdx1(backend) <<";" << std::endl;
stream << _size_t << " gid1 = " << GlobalIdx1(backend) <<";" << std::endl;
stream << _size_t << " gsize1 = " << GlobalSize1(backend) <<";" << std::endl;
stream << _size_t << " upper_bound_1 = ( M +" << p_.local_size_1 - 1 << ")/" << p_.local_size_1 << "*" << p_.local_size_1 << ";" << std::endl;
stream << "for(" << _size_t << " r = gid1; r < upper_bound_1; r += gsize1){" << std::endl;
2015-02-10 16:33:38 -05:00
stream.inc_tab();
for (const auto & e : reductions)
2015-05-13 02:20:44 -04:00
stream << e->process("#scalartype #name_acc = " + neutral_element((e)->root_op(), backend, "#scalartype") + ";") << std::endl;
2015-02-10 16:33:38 -05:00
stream << "if (r < M)" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
stream << "for(" << _size_t << " c = lid0; c < " << p_.num_groups_0 << "; c += lsize0){" << std::endl;
2015-02-10 16:33:38 -05:00
stream.inc_tab();
for (mapped_reduction* e: reductions)
2015-02-10 16:33:38 -05:00
compute_reduction(stream, e->process("#name_acc"), e->process("#name_temp[r + M*c]"), e->root_op());
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
for (auto & expr : reductions)
stream << expr->process("#name_buf[lid1*" + local_size_0_ld_str + "+ lid0] = #name_acc;") << std::endl;
stream << "#pragma unroll" << std::endl;
stream << "for(" << _size_t << " stride = " << p_.local_size_0/2 << "; stride >0; stride /=2)" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
stream << LocalBarrier(backend) << ";" << std::endl;
stream << "if (lid0 < stride)" << std::endl;
stream << "{" << std::endl;
stream.inc_tab();
for (auto & e : reductions)
2015-02-10 16:33:38 -05:00
if (e->is_index_reduction())
compute_index_reduction(stream, e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0]"), e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0 + stride]")
, e->process("#name_buf_value[lid1*" + local_size_0_ld_str + " + lid0]"), e->process("#name_buf_value[lid1*" + local_size_0_ld_str + " + lid0 + stride]")
2015-02-10 16:33:38 -05:00
, e->root_op());
else
compute_reduction(stream,e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0]"), e->process("#name_buf[lid1*" + local_size_0_ld_str + " + lid0 + stride]"), e->root_op());
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
stream << "if (lid0 == 0 && r < M)";
stream << "{" << std::endl;
stream.inc_tab();
2015-02-10 16:33:38 -05:00
std::map<std::string, std::string> accessors;
accessors["mreduction"] = "#name_buf[lid1*" + local_size_0_ld_str + "]";
2015-01-17 15:47:52 -05:00
accessors["array1"] = "#pointer[r*#stride]";
evaluate(stream, PARENT_NODE_TYPE, accessors, expressions, mappings);
2015-02-10 16:33:38 -05:00
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
stream.dec_tab();
stream << "}" << std::endl;
}
2015-02-10 16:33:38 -05:00
return stream.str();
}
mreduction::mreduction(mreduction::parameters_type const & parameters,
mreduction::reduction_type rtype,
binding_policy_t binding_policy) :
2015-01-17 10:48:02 -05:00
base_impl<mreduction, mreduction_parameters>(parameters, binding_policy),
reduction_type_(rtype){ }
std::vector<int_t> mreduction::input_sizes(expressions_tuple const & expressions) const
{
array_expression const & first_expression = *expressions.data().front();
std::vector<std::size_t> idx = filter_nodes(&is_reduction, first_expression, false);
2015-01-16 07:31:39 -05:00
std::pair<int_t, int_t> MN = matrix_size(lhs_most(first_expression.tree(), idx[0]));
if(reduction_type_==REDUCE_COLUMNS)
std::swap(MN.first,MN.second);
return tools::make_vector<int_t>() << MN.first << MN.second;
}
void mreduction::enqueue(driver::CommandQueue & queue, driver::Program & program, const char * suffix, base & fallback, controller<expressions_tuple> const & controller)
{
2015-02-05 04:42:57 -05:00
expressions_tuple const & expressions = controller.x();
driver::Context const & context = expressions.context();
2015-02-10 16:33:38 -05:00
std::vector<int_t> MN = input_sizes(expressions);
2015-02-10 16:33:38 -05:00
std::vector<array_expression::node const *> reductions;
for (const auto & e : expressions.data())
{
std::vector<size_t> reductions_idx = filter_nodes(&is_reduction, *e, false);
for (auto & r : reductions_idx)
reductions.push_back(&(e)->tree()[r]);
}
//Fallback
if(reduction_type_==REDUCE_COLUMNS && p_.simd_width>1 && requires_fallback(expressions))
{
fallback.enqueue(queue, program, "fallback", fallback, controller);
return;
}
//Kernel
std::vector< driver::Buffer > tmp;
std::vector< driver::Buffer > tmpidx;
2015-02-10 16:33:38 -05:00
unsigned int dtype_size = size_of(lhs_most(expressions.data().front()->tree(), expressions.data().front()->root()).lhs.dtype);
char name[2][32] = {{"prod"}, {"reduce"}};
strcat(name[0], suffix);
strcat(name[1], suffix);
unsigned int nk = (p_.num_groups_0==1)?1:2;
std::vector<driver::Kernel> kernels;
for(unsigned int k = 0 ; k < nk ; ++k)
kernels.push_back(driver::Kernel(program, name[k]));
for(unsigned int k = 0 ; k < nk ; ++k)
2015-02-10 16:33:38 -05:00
{
driver::Kernel & kernel = kernels[k];
2015-02-10 16:33:38 -05:00
unsigned int n_arg = 0;
int_t M = MN[0];
int_t N = MN[1];
kernel.setSizeArg(n_arg++, M);
kernel.setSizeArg(n_arg++, N);
2015-02-10 16:33:38 -05:00
//Temporary buffers
unsigned int i = 0;
unsigned int j = 0;
for (auto const & r : reductions)
{
if (is_index_reduction(r->op))
{
if (tmpidx.size() <= j)
tmpidx.push_back(driver::Buffer(context, p_.num_groups_0*M*4));
kernel.setArg(n_arg++, tmpidx[j]);
2015-02-10 16:33:38 -05:00
j++;
}
if (tmp.size() <= i)
tmp.push_back(driver::Buffer(context, p_.num_groups_0*M*dtype_size));
kernel.setArg(n_arg++, tmp[i]);
2015-02-10 16:33:38 -05:00
i++;
}
set_arguments(expressions, kernel, n_arg);
2015-02-10 16:33:38 -05:00
}
//NDRange
driver::NDRange global[2] = { driver::NDRange(p_.local_size_0*p_.num_groups_0, p_.local_size_1*p_.num_groups_1), driver::NDRange(p_.local_size_0, p_.local_size_1*p_.num_groups_1) };
driver::NDRange local[2] = { driver::NDRange(p_.local_size_0, p_.local_size_1), driver::NDRange(p_.local_size_0, p_.local_size_1) };
for(unsigned int i = 0 ; i < nk ; ++i)
controller.execution_options().enqueue(program.context(), kernels[i], global[i], local[i]);
}
mreduction_rows::mreduction_rows(mreduction_parameters const & parameters,
binding_policy_t binding_policy):
mreduction(parameters, REDUCE_ROWS, binding_policy){}
mreduction_rows::mreduction_rows(unsigned int simd, unsigned int ls1, unsigned int ls2,
unsigned int ng1, unsigned int ng2, fetching_policy_type fetch, binding_policy_t bind):
mreduction(mreduction_parameters(simd, ls1, ls2, ng1, ng2, fetch), REDUCE_ROWS, bind)
{}
mreduction_cols::mreduction_cols(mreduction::parameters_type const & parameters,
binding_policy_t binding_policy):
mreduction(parameters, REDUCE_COLUMNS, binding_policy){}
mreduction_cols::mreduction_cols(unsigned int simd, unsigned int ls1, unsigned int ls2,
unsigned int ng1, unsigned int ng2, fetching_policy_type fetch, binding_policy_t bind):
mreduction(mreduction_parameters(simd, ls1, ls2, ng1, ng2, fetch), REDUCE_COLUMNS, bind)
{}
}