Files
triton/python/external/boost/libs/numpy/doc/tutorial/fromdata.rst

52 lines
1.9 KiB
ReStructuredText
Raw Normal View History

How to access data using raw pointers
=====================================
One of the advantages of the ndarray wrapper is that the same data can be used in both Python and C++ and changes can be made to reflect at both ends.
The from_data method makes this possible.
Like before, first get the necessary headers, setup the namespaces and initialize the Python runtime and numpy module::
#include <boost/numpy.hpp>
#include <iostream>
namespace p = boost::python;
namespace np = boost::numpy;
int main(int argc, char **argv)
{
Py_Initialize();
np::initialize();
Create an array in C++ , and pass the pointer to it to the from_data method to create an ndarray::
int arr[] = {1,2,3,4} ;
np::ndarray py_array = np::from_data(arr, np::dtype::get_builtin<int>() , p::make_tuple(4), p::make_tuple(4), p::object());
Print the source C++ array, as well as the ndarray, to check if they are the same::
std::cout << "C++ array :" << std::endl ;
for (int j=0;j<4;j++)
{
std::cout << arr[j] << ' ' ;
}
std::cout << std::endl << "Python ndarray :" << p::extract<char const *>(p::str(py_array)) << std::endl;
Now, change an element in the Python ndarray, and check if the value changed correspondingly in the source C++ array::
py_array[1] = 5 ;
std::cout << "Is the change reflected in the C++ array used to create the ndarray ? " << std::endl ;
for (int j = 0;j<4 ; j++)
{
std::cout << arr[j] << ' ' ;
}
Next, change an element of the source C++ array and see if it is reflected in the Python ndarray::
arr[2] = 8 ;
std::cout << std::endl << "Is the change reflected in the Python ndarray ?" << std::endl << p::extract<char const *>(p::str(py_array)) << std::endl;
}
As we can see, the changes are reflected across the ends. This happens because the from_data method passes the C++ array by reference to create the ndarray, and thus uses the same locations for storing data.