Files
triton/atidlas/tools/tree_parsing.hpp

506 lines
19 KiB
C++
Raw Normal View History

2014-08-30 18:02:17 -04:00
#ifndef ATIDLAS_TREE_PARSING_HPP
#define ATIDLAS_TREE_PARSING_HPP
#include <set>
#include "CL/cl.h"
#include "viennacl/forwards.h"
#include "viennacl/scheduler/forwards.h"
#include "atidlas/mapped_objects.hpp"
2014-09-01 19:37:05 -04:00
#include "atidlas/tools/misc.hpp"
2014-08-30 18:02:17 -04:00
#include "atidlas/forwards.h"
namespace atidlas
{
2014-09-01 19:37:05 -04:00
namespace tools
2014-08-30 18:02:17 -04:00
{
/** @brief base functor class for traversing a statement */
class traversal_functor
{
public:
void call_before_expansion(viennacl::scheduler::statement const &, atidlas_int_t) const { }
void call_after_expansion(viennacl::scheduler::statement const &, atidlas_int_t) const { }
};
/** @brief Recursively execute a functor on a statement */
template<class Fun>
inline void traverse(viennacl::scheduler::statement const & statement, atidlas_int_t root_idx, Fun const & fun, bool inspect)
{
viennacl::scheduler::statement_node const & root_node = statement.array()[root_idx];
2014-09-01 19:37:05 -04:00
bool recurse = tools::node_leaf(root_node.op)?inspect:true;
2014-08-30 18:02:17 -04:00
fun.call_before_expansion(statement, root_idx);
//Lhs:
if (recurse)
{
if (root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
traverse(statement, root_node.lhs.node_index, fun, inspect);
if (root_node.lhs.type_family != viennacl::scheduler::INVALID_TYPE_FAMILY)
fun(statement, root_idx, LHS_NODE_TYPE);
}
//Self:
fun(statement, root_idx, PARENT_NODE_TYPE);
//Rhs:
if (recurse && root_node.rhs.type_family!=viennacl::scheduler::INVALID_TYPE_FAMILY)
{
if (root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
traverse(statement, root_node.rhs.node_index, fun, inspect);
if (root_node.rhs.type_family != viennacl::scheduler::INVALID_TYPE_FAMILY)
fun(statement, root_idx, RHS_NODE_TYPE);
}
fun.call_after_expansion(statement, root_idx);
}
class filter_fun : public traversal_functor
{
public:
typedef bool (*pred_t)(viennacl::scheduler::statement_node const & node);
filter_fun(pred_t pred, std::vector<size_t> & out) : pred_(pred), out_(out){ }
void operator()(viennacl::scheduler::statement const & statement, size_t root_idx, leaf_t) const
{
viennacl::scheduler::statement_node const * root_node = &statement.array()[root_idx];
if (pred_(*root_node))
out_.push_back(root_idx);
}
private:
pred_t pred_;
std::vector<size_t> & out_;
};
std::vector<size_t> filter_nodes(bool (*pred)(viennacl::scheduler::statement_node const & node), viennacl::scheduler::statement const & statement, bool inspect)
{
std::vector<size_t> res;
2014-09-01 19:37:05 -04:00
tools::traverse(statement, statement.root(), filter_fun(pred, res), inspect);
2014-08-30 18:02:17 -04:00
return res;
}
class filter_elements_fun : public traversal_functor
{
public:
filter_elements_fun(viennacl::scheduler::statement_node_subtype subtype, std::vector<viennacl::scheduler::lhs_rhs_element> & out) : subtype_(subtype), out_(out) { }
void operator()(viennacl::scheduler::statement const & statement, size_t root_idx, leaf_t) const
{
viennacl::scheduler::statement_node const * root_node = &statement.array()[root_idx];
if (root_node->lhs.subtype==subtype_)
out_.push_back(root_node->lhs);
if (root_node->rhs.subtype==subtype_)
out_.push_back(root_node->rhs);
}
private:
viennacl::scheduler::statement_node_subtype subtype_;
std::vector<viennacl::scheduler::lhs_rhs_element> & out_;
};
std::vector<viennacl::scheduler::lhs_rhs_element> filter_elements(viennacl::scheduler::statement_node_subtype subtype, viennacl::scheduler::statement const & statement)
{
std::vector<viennacl::scheduler::lhs_rhs_element> res;
2014-09-01 19:37:05 -04:00
tools::traverse(statement, statement.root(), filter_elements_fun(subtype, res), true);
2014-08-30 18:02:17 -04:00
return res;
}
/** @brief generate a string from an operation_node_type */
inline const char * evaluate(viennacl::scheduler::operation_node_type type)
{
using namespace viennacl::scheduler;
// unary expression
switch (type)
{
//Function
case OPERATION_UNARY_ABS_TYPE : return "abs";
case OPERATION_UNARY_ACOS_TYPE : return "acos";
case OPERATION_UNARY_ASIN_TYPE : return "asin";
case OPERATION_UNARY_ATAN_TYPE : return "atan";
case OPERATION_UNARY_CEIL_TYPE : return "ceil";
case OPERATION_UNARY_COS_TYPE : return "cos";
case OPERATION_UNARY_COSH_TYPE : return "cosh";
case OPERATION_UNARY_EXP_TYPE : return "exp";
case OPERATION_UNARY_FABS_TYPE : return "fabs";
case OPERATION_UNARY_FLOOR_TYPE : return "floor";
case OPERATION_UNARY_LOG_TYPE : return "log";
case OPERATION_UNARY_LOG10_TYPE : return "log10";
case OPERATION_UNARY_SIN_TYPE : return "sin";
case OPERATION_UNARY_SINH_TYPE : return "sinh";
case OPERATION_UNARY_SQRT_TYPE : return "sqrt";
case OPERATION_UNARY_TAN_TYPE : return "tan";
case OPERATION_UNARY_TANH_TYPE : return "tanh";
case OPERATION_UNARY_CAST_CHAR_TYPE : return "(char)";
case OPERATION_UNARY_CAST_UCHAR_TYPE : return "(uchar)";
case OPERATION_UNARY_CAST_SHORT_TYPE : return "(short)";
case OPERATION_UNARY_CAST_USHORT_TYPE : return "(ushort)";
case OPERATION_UNARY_CAST_INT_TYPE : return "(int)";
case OPERATION_UNARY_CAST_UINT_TYPE : return "(uint)";
case OPERATION_UNARY_CAST_LONG_TYPE : return "(long)";
case OPERATION_UNARY_CAST_ULONG_TYPE : return "(ulong)";
case OPERATION_UNARY_CAST_HALF_TYPE : return "(half)";
case OPERATION_UNARY_CAST_FLOAT_TYPE : return "(float)";
case OPERATION_UNARY_CAST_DOUBLE_TYPE : return "(double)";
case OPERATION_BINARY_ELEMENT_ARGFMAX_TYPE : return "argfmax";
case OPERATION_BINARY_ELEMENT_ARGMAX_TYPE : return "argmax";
case OPERATION_BINARY_ELEMENT_ARGFMIN_TYPE : return "argfmin";
case OPERATION_BINARY_ELEMENT_ARGMIN_TYPE : return "argmin";
case OPERATION_BINARY_ELEMENT_POW_TYPE : return "pow";
//Arithmetic
case OPERATION_UNARY_MINUS_TYPE : return "-";
case OPERATION_BINARY_ASSIGN_TYPE : return "=";
case OPERATION_BINARY_INPLACE_ADD_TYPE : return "+=";
case OPERATION_BINARY_INPLACE_SUB_TYPE : return "-=";
case OPERATION_BINARY_ADD_TYPE : return "+";
case OPERATION_BINARY_SUB_TYPE : return "-";
case OPERATION_BINARY_MULT_TYPE : return "*";
case OPERATION_BINARY_ELEMENT_PROD_TYPE : return "*";
case OPERATION_BINARY_DIV_TYPE : return "/";
case OPERATION_BINARY_ELEMENT_DIV_TYPE : return "/";
case OPERATION_BINARY_ACCESS_TYPE : return "[]";
//Relational
case OPERATION_BINARY_ELEMENT_EQ_TYPE : return "isequal";
case OPERATION_BINARY_ELEMENT_NEQ_TYPE : return "isnotequal";
case OPERATION_BINARY_ELEMENT_GREATER_TYPE : return "isgreater";
case OPERATION_BINARY_ELEMENT_GEQ_TYPE : return "isgreaterequal";
case OPERATION_BINARY_ELEMENT_LESS_TYPE : return "isless";
case OPERATION_BINARY_ELEMENT_LEQ_TYPE : return "islessequal";
case OPERATION_BINARY_ELEMENT_FMAX_TYPE : return "fmax";
case OPERATION_BINARY_ELEMENT_FMIN_TYPE : return "fmin";
case OPERATION_BINARY_ELEMENT_MAX_TYPE : return "max";
case OPERATION_BINARY_ELEMENT_MIN_TYPE : return "min";
//Unary
case OPERATION_UNARY_TRANS_TYPE : return "trans";
//Binary
case OPERATION_BINARY_INNER_PROD_TYPE : return "iprod";
case OPERATION_BINARY_MAT_MAT_PROD_TYPE : return "mmprod";
case OPERATION_BINARY_MAT_VEC_PROD_TYPE : return "mvprod";
case OPERATION_BINARY_VECTOR_DIAG_TYPE : return "vdiag";
case OPERATION_BINARY_MATRIX_DIAG_TYPE : return "mdiag";
case OPERATION_BINARY_MATRIX_ROW_TYPE : return "row";
case OPERATION_BINARY_MATRIX_COLUMN_TYPE : return "col";
default : throw generator_not_supported_exception("Unsupported operator");
}
}
inline const char * operator_string(viennacl::scheduler::operation_node_type type)
{
using namespace viennacl::scheduler;
switch (type)
{
case OPERATION_UNARY_CAST_CHAR_TYPE : return "char";
case OPERATION_UNARY_CAST_UCHAR_TYPE : return "uchar";
case OPERATION_UNARY_CAST_SHORT_TYPE : return "short";
case OPERATION_UNARY_CAST_USHORT_TYPE : return "ushort";
case OPERATION_UNARY_CAST_INT_TYPE : return "int";
case OPERATION_UNARY_CAST_UINT_TYPE : return "uint";
case OPERATION_UNARY_CAST_LONG_TYPE : return "long";
case OPERATION_UNARY_CAST_ULONG_TYPE : return "ulong";
case OPERATION_UNARY_CAST_HALF_TYPE : return "half";
case OPERATION_UNARY_CAST_FLOAT_TYPE : return "float";
case OPERATION_UNARY_CAST_DOUBLE_TYPE : return "double";
case OPERATION_UNARY_MINUS_TYPE : return "umin";
case OPERATION_BINARY_ASSIGN_TYPE : return "assign";
case OPERATION_BINARY_INPLACE_ADD_TYPE : return "ip_add";
case OPERATION_BINARY_INPLACE_SUB_TYPE : return "ip_sub";
case OPERATION_BINARY_ADD_TYPE : return "add";
case OPERATION_BINARY_SUB_TYPE : return "sub";
case OPERATION_BINARY_MULT_TYPE : return "mult";
case OPERATION_BINARY_ELEMENT_PROD_TYPE : return "eprod";
case OPERATION_BINARY_DIV_TYPE : return "div";
case OPERATION_BINARY_ELEMENT_DIV_TYPE : return "ediv";
case OPERATION_BINARY_ACCESS_TYPE : return "acc";
default : return evaluate(type);
}
}
/** @brief functor for generating the expression string from a statement */
2014-09-01 19:37:05 -04:00
class evaluate_expression_traversal: public tools::traversal_functor
2014-08-30 18:02:17 -04:00
{
private:
std::map<std::string, std::string> const & accessors_;
std::string & str_;
mapping_type const & mapping_;
public:
evaluate_expression_traversal(std::map<std::string, std::string> const & accessors, std::string & str, mapping_type const & mapping) : accessors_(accessors), str_(str), mapping_(mapping){ }
void call_before_expansion(viennacl::scheduler::statement const & statement, atidlas_int_t root_idx) const
{
viennacl::scheduler::statement_node const & root_node = statement.array()[root_idx];
2014-09-01 19:37:05 -04:00
if ((root_node.op.type_family==viennacl::scheduler::OPERATION_UNARY_TYPE_FAMILY || tools::elementwise_function(root_node.op))
&& !tools::node_leaf(root_node.op))
str_+=tools::evaluate(root_node.op.type);
2014-08-30 18:02:17 -04:00
str_+="(";
}
void call_after_expansion(viennacl::scheduler::statement const & /*statement*/, atidlas_int_t /*root_idx*/) const
{
str_+=")";
}
void operator()(viennacl::scheduler::statement const & statement, atidlas_int_t root_idx, leaf_t leaf) const
{
viennacl::scheduler::statement_node const & root_node = statement.array()[root_idx];
mapping_type::key_type key = std::make_pair(root_idx, leaf);
if (leaf==PARENT_NODE_TYPE)
{
2014-09-01 19:37:05 -04:00
if (tools::node_leaf(root_node.op))
2014-08-30 18:02:17 -04:00
str_ += mapping_.at(key)->evaluate(accessors_);
2014-09-01 19:37:05 -04:00
else if (tools::elementwise_operator(root_node.op))
str_ += tools::evaluate(root_node.op.type);
else if (root_node.op.type_family!=viennacl::scheduler::OPERATION_UNARY_TYPE_FAMILY && tools::elementwise_function(root_node.op))
2014-08-30 18:02:17 -04:00
str_ += ",";
}
else
{
if (leaf==LHS_NODE_TYPE)
{
if (root_node.lhs.type_family!=viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
str_ += mapping_.at(key)->evaluate(accessors_);
}
if (leaf==RHS_NODE_TYPE)
{
if (root_node.rhs.type_family!=viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
str_ += mapping_.at(key)->evaluate(accessors_);
}
}
}
};
inline std::string evaluate(leaf_t leaf, std::map<std::string, std::string> const & accessors,
viennacl::scheduler::statement const & statement, atidlas_int_t root_idx, mapping_type const & mapping)
{
std::string res;
evaluate_expression_traversal traversal_functor(accessors, res, mapping);
viennacl::scheduler::statement_node const & root_node = statement.array()[root_idx];
if (leaf==RHS_NODE_TYPE)
{
if (root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
2014-09-01 19:37:05 -04:00
tools::traverse(statement, root_node.rhs.node_index, traversal_functor, false);
2014-08-30 18:02:17 -04:00
else
traversal_functor(statement, root_idx, leaf);
}
else if (leaf==LHS_NODE_TYPE)
{
if (root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
2014-09-01 19:37:05 -04:00
tools::traverse(statement, root_node.lhs.node_index, traversal_functor, false);
2014-08-30 18:02:17 -04:00
else
traversal_functor(statement, root_idx, leaf);
}
else
2014-09-01 19:37:05 -04:00
tools::traverse(statement, root_idx, traversal_functor, false);
2014-08-30 18:02:17 -04:00
return res;
}
2014-09-01 19:37:05 -04:00
inline void evaluate(tools::kernel_generation_stream & stream, leaf_t leaf, std::map<std::string, std::string> const & accessors,
2014-08-30 18:02:17 -04:00
statements_container const & statements, std::vector<mapping_type> const & mappings)
{
statements_container::data_type::const_iterator sit;
std::vector<mapping_type>::const_iterator mit;
for (mit = mappings.begin(), sit = statements.data().begin(); sit != statements.data().end(); ++mit, ++sit)
stream << evaluate(leaf, accessors, *sit, sit->root(), *mit) << ";" << std::endl;
}
/** @brief functor for fetching or writing-back the elements in a statement */
2014-09-01 19:37:05 -04:00
class process_traversal : public tools::traversal_functor
2014-08-30 18:02:17 -04:00
{
public:
2014-09-01 19:37:05 -04:00
process_traversal(std::multimap<std::string, std::string> const & accessors, tools::kernel_generation_stream & stream,
2014-08-30 18:02:17 -04:00
mapping_type const & mapping, std::set<std::string> & already_processed) : accessors_(accessors), stream_(stream), mapping_(mapping), already_processed_(already_processed){ }
void operator()(viennacl::scheduler::statement const & /*statement*/, atidlas_int_t root_idx, leaf_t leaf) const
{
mapping_type::const_iterator it = mapping_.find(std::make_pair(root_idx, leaf));
if (it!=mapping_.end())
{
mapped_object * obj = it->second.get();
std::string name = obj->name();
if(accessors_.find(name)!=accessors_.end() && already_processed_.insert(obj->process("#name")).second)
for(std::multimap<std::string, std::string>::const_iterator it = accessors_.lower_bound(name) ; it != accessors_.upper_bound(name) ; ++it)
stream_ << obj->process(it->second) << std::endl;
2014-08-30 18:02:17 -04:00
std::string key = obj->type_key();
if(accessors_.find(key)!=accessors_.end() && already_processed_.insert(obj->process("#name")).second)
2014-08-30 18:02:17 -04:00
for(std::multimap<std::string, std::string>::const_iterator it = accessors_.lower_bound(key) ; it != accessors_.upper_bound(key) ; ++it)
stream_ << obj->process(it->second) << std::endl;
}
}
private:
std::multimap<std::string, std::string> accessors_;
2014-09-01 19:37:05 -04:00
tools::kernel_generation_stream & stream_;
2014-08-30 18:02:17 -04:00
mapping_type const & mapping_;
std::set<std::string> & already_processed_;
};
2014-09-01 19:37:05 -04:00
inline void process(tools::kernel_generation_stream & stream, leaf_t leaf, std::multimap<std::string, std::string> const & accessors,
2014-08-30 18:02:17 -04:00
viennacl::scheduler::statement const & statement, size_t root_idx, mapping_type const & mapping, std::set<std::string> & already_processed)
{
process_traversal traversal_functor(accessors, stream, mapping, already_processed);
viennacl::scheduler::statement_node const & root_node = statement.array()[root_idx];
if (leaf==RHS_NODE_TYPE)
{
if (root_node.rhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
2014-09-01 19:37:05 -04:00
tools::traverse(statement, root_node.rhs.node_index, traversal_functor, true);
2014-08-30 18:02:17 -04:00
else
traversal_functor(statement, root_idx, leaf);
}
else if (leaf==LHS_NODE_TYPE)
{
if (root_node.lhs.type_family==viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
2014-09-01 19:37:05 -04:00
tools::traverse(statement, root_node.lhs.node_index, traversal_functor, true);
2014-08-30 18:02:17 -04:00
else
traversal_functor(statement, root_idx, leaf);
}
else
{
2014-09-01 19:37:05 -04:00
tools::traverse(statement, root_idx, traversal_functor, true);
2014-08-30 18:02:17 -04:00
}
}
2014-09-01 19:37:05 -04:00
inline void process(tools::kernel_generation_stream & stream, leaf_t leaf, std::multimap<std::string, std::string> const & accessors,
2014-08-30 18:02:17 -04:00
statements_container const & statements, std::vector<mapping_type> const & mappings)
{
statements_container::data_type::const_iterator sit;
std::vector<mapping_type>::const_iterator mit;
std::set<std::string> already_processed;
for (mit = mappings.begin(), sit = statements.data().begin(); sit != statements.data().end(); ++mit, ++sit)
process(stream, leaf, accessors, *sit, sit->root(), *mit, already_processed);
}
class statement_representation_functor : public traversal_functor{
private:
static void append_id(char * & ptr, unsigned int val)
{
if (val==0)
*ptr++='0';
else
while (val>0)
{
*ptr++= (char)('0' + (val % 10));
val /= 10;
}
}
public:
typedef void result_type;
statement_representation_functor(symbolic_binder & binder, char *& ptr) : binder_(binder), ptr_(ptr){ }
template<class NumericT>
inline result_type operator()(NumericT const & /*scal*/) const
{
*ptr_++='h'; //host
*ptr_++='s'; //scalar
2014-09-01 19:37:05 -04:00
*ptr_++=tools::first_letter_of_type<NumericT>::value();
2014-08-30 18:02:17 -04:00
}
/** @brief Scalar mapping */
template<class NumericT>
inline result_type operator()(viennacl::scalar<NumericT> const & scal) const
{
*ptr_++='s'; //scalar
2014-09-01 19:37:05 -04:00
*ptr_++=tools::first_letter_of_type<NumericT>::value();
2014-08-30 18:02:17 -04:00
append_id(ptr_, binder_.get(&viennacl::traits::handle(scal)));
}
/** @brief Vector mapping */
template<class NumericT>
inline result_type operator()(viennacl::vector_base<NumericT> const & vec) const
{
*ptr_++='v'; //vector
2014-09-01 19:37:05 -04:00
*ptr_++=tools::first_letter_of_type<NumericT>::value();
2014-08-30 18:02:17 -04:00
append_id(ptr_, binder_.get(&viennacl::traits::handle(vec)));
}
/** @brief Implicit vector mapping */
template<class NumericT>
inline result_type operator()(viennacl::implicit_vector_base<NumericT> const & /*vec*/) const
{
*ptr_++='i'; //implicit
*ptr_++='v'; //vector
2014-09-01 19:37:05 -04:00
*ptr_++=tools::first_letter_of_type<NumericT>::value();
2014-08-30 18:02:17 -04:00
}
/** @brief Matrix mapping */
template<class NumericT>
inline result_type operator()(viennacl::matrix_base<NumericT> const & mat) const
{
*ptr_++='m'; //Matrix
2014-09-01 19:37:05 -04:00
*ptr_++=tools::first_letter_of_type<NumericT>::value();
2014-08-30 18:02:17 -04:00
append_id(ptr_, binder_.get(&viennacl::traits::handle(mat)));
}
/** @brief Implicit matrix mapping */
template<class NumericT>
inline result_type operator()(viennacl::implicit_matrix_base<NumericT> const & /*mat*/) const
{
*ptr_++='i'; //implicit
*ptr_++='m'; //matrix
2014-09-01 19:37:05 -04:00
*ptr_++=tools::first_letter_of_type<NumericT>::value();
2014-08-30 18:02:17 -04:00
}
static inline void append(char*& p, const char * str)
{
std::size_t n = std::strlen(str);
std::memcpy(p, str, n);
p+=n;
}
inline void operator()(viennacl::scheduler::statement const & statement, atidlas_int_t root_idx, leaf_t leaf_t) const
{
viennacl::scheduler::statement_node const & root_node = statement.array()[root_idx];
if (leaf_t==LHS_NODE_TYPE && root_node.lhs.type_family != viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
2014-09-01 19:37:05 -04:00
tools::call_on_element(root_node.lhs, *this);
2014-08-30 18:02:17 -04:00
else if (root_node.op.type_family==viennacl::scheduler::OPERATION_BINARY_TYPE_FAMILY && leaf_t==RHS_NODE_TYPE && root_node.rhs.type_family != viennacl::scheduler::COMPOSITE_OPERATION_FAMILY)
2014-09-01 19:37:05 -04:00
tools::call_on_element(root_node.rhs, *this);
2014-08-30 18:02:17 -04:00
else if (leaf_t==PARENT_NODE_TYPE)
append_id(ptr_,root_node.op.type);
}
private:
symbolic_binder & binder_;
char *& ptr_;
};
inline std::string statements_representation(statements_container const & statements, binding_policy_t binding_policy)
{
std::vector<char> program_name_vector(256);
char* program_name = program_name_vector.data();
if (statements.order()==statements_container::INDEPENDENT)
*program_name++='i';
else
*program_name++='s';
tools::shared_ptr<symbolic_binder> binder = make_binder(binding_policy);
for (statements_container::data_type::const_iterator it = statements.data().begin(); it != statements.data().end(); ++it)
2014-09-01 19:37:05 -04:00
tools::traverse(*it, it->root(), tools::statement_representation_functor(*binder, program_name),true);
2014-08-30 18:02:17 -04:00
*program_name='\0';
return std::string(program_name_vector.data());
}
}
}
#endif