110 lines
4.4 KiB
Python
110 lines
4.4 KiB
Python
![]() |
import triton
|
||
|
import numpy
|
||
|
import torch
|
||
|
import itertools
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
numpy.random.seed(0)
|
||
|
|
||
|
def to_sparse(expr, data, layout, shape, block):
|
||
|
# shape of result
|
||
|
sparse = None
|
||
|
shape_ret = []
|
||
|
for i, d in enumerate(expr):
|
||
|
if d.isupper() and sparse is None:
|
||
|
sparse = i
|
||
|
shape_ret.append(int(layout.sum()))
|
||
|
if d.isupper():
|
||
|
shape_ret.append(block[d])
|
||
|
else:
|
||
|
shape_ret.append(shape[i])
|
||
|
# iterator
|
||
|
steps = [block[d] if d.isupper() else 1 for d in expr]
|
||
|
it = [range(0, shape[i], steps[i]) for i in range(len(expr))]
|
||
|
# create result
|
||
|
ret = torch.empty(*shape_ret, dtype=data.dtype, device=data.device)
|
||
|
blockid = 0
|
||
|
nzblockid = 0
|
||
|
for curr in itertools.product(*it):
|
||
|
if all([curr[i] == it[i][0] for i in range(len(curr)) if expr[i].isupper()]):
|
||
|
blockid = 0
|
||
|
nzblockid = 0
|
||
|
data_slice = [slice(curr[i], curr[i] + steps[i], 1) for i in range(len(curr))]
|
||
|
ret_slice = [slice(0, block[expr[i]], 1) if expr[i].isupper() else slice(curr[i], curr[i] + 1) for i in range(len(curr))]
|
||
|
ret_slice.insert(sparse, nzblockid)
|
||
|
if int(layout.view(-1)[blockid]):
|
||
|
ret[ret_slice] = data[data_slice]
|
||
|
nzblockid += 1
|
||
|
blockid += 1
|
||
|
return ret
|
||
|
|
||
|
def to_dense(expr, data, layout, shape, block):
|
||
|
sparse = None
|
||
|
for i, d in enumerate(expr):
|
||
|
if d.isupper() and sparse is None:
|
||
|
sparse = i
|
||
|
|
||
|
ret = torch.zeros(*shape, dtype=data.dtype, device=data.device)
|
||
|
steps = [block[d] if d.isupper() else 1 for d in expr]
|
||
|
it = [range(0, shape[i], steps[i]) for i in range(len(expr))]
|
||
|
blockid = 0
|
||
|
nzblockid = 0
|
||
|
for curr in itertools.product(*it):
|
||
|
if all([curr[i] == it[i][0] for i in range(len(curr)) if expr[i].isupper()]):
|
||
|
blockid = 0
|
||
|
nzblockid = 0
|
||
|
ret_slice = [slice(curr[i], curr[i] + steps[i], 1) for i in range(len(curr))]
|
||
|
data_slice = [slice(0, block[expr[i]], 1) if expr[i].isupper() else slice(curr[i], curr[i] + 1) for i in range(len(curr))]
|
||
|
data_slice.insert(sparse, nzblockid)
|
||
|
if int(layout.view(-1)[blockid]):
|
||
|
ret[ret_slice] = data[data_slice]
|
||
|
nzblockid += 1
|
||
|
blockid += 1
|
||
|
return ret
|
||
|
|
||
|
def test_expr(expr, shape, blocks):
|
||
|
# decompose expr
|
||
|
expr_a, expr_bc = expr.split(",")
|
||
|
expr_b, expr_c = expr_bc.split("->")
|
||
|
# check with argument is sparse
|
||
|
sparse_a = any(x.isupper() for x in expr_a)
|
||
|
sparse_b = any(x.isupper() for x in expr_b)
|
||
|
sparse_c = any(x.isupper() for x in expr_c)
|
||
|
# allocate data
|
||
|
shape_a = [shape[d.lower()] for d in expr_a]
|
||
|
shape_b = [shape[d.lower()] for d in expr_b]
|
||
|
shape_c = [shape[d.lower()] for d in expr_c]
|
||
|
ref_a = torch.rand(*shape_a, device='cuda')
|
||
|
ref_b = torch.rand(*shape_b, device='cuda')
|
||
|
ref_c = torch.zeros(*shape_c, device='cuda')
|
||
|
# layouts
|
||
|
layout_a = [shape[d.lower()]//blocks[d] for d in expr_a if d.isupper()]
|
||
|
layout_b = [shape[d.lower()]//blocks[d] for d in expr_b if d.isupper()]
|
||
|
layout_c = [shape[d.lower()]//blocks[d] for d in expr_c if d.isupper()]
|
||
|
layout_a = torch.randint(0, 2, layout_a, device='cuda')
|
||
|
layout_b = torch.randint(0, 2, layout_b, device='cuda')
|
||
|
layout_c = torch.randint(0, 2, layout_c, device='cuda')
|
||
|
# triton computation
|
||
|
triton_a = to_sparse(expr_a, ref_a, layout_a, shape_a, blocks) if sparse_a else ref_a
|
||
|
triton_b = to_sparse(expr_b, ref_b, layout_b, shape_b, blocks) if sparse_b else ref_b
|
||
|
layouts = {expr_a: layout_a, expr_b: layout_b, expr_c: layout_c}
|
||
|
triton_c = triton.ops.einsum(expr, triton_a, triton_b, layouts, blocks)
|
||
|
torch.cuda.synchronize()
|
||
|
# reference computation
|
||
|
ref_a = to_dense(expr_a, triton_a, layout_a, shape_a, blocks) if sparse_a else ref_a
|
||
|
ref_b = to_dense(expr_b, triton_b, layout_b, shape_b, blocks) if sparse_b else ref_b
|
||
|
ref_c = torch.einsum(expr.lower(), ref_a, ref_b)
|
||
|
if sparse_c:
|
||
|
ref_c = to_sparse(expr_c, ref_c, layout_c, shape_c, blocks)
|
||
|
torch.cuda.synchronize()
|
||
|
print((ref_c - triton_c).abs().max())
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
# shape characteristics
|
||
|
test_expr('bHMK,bhkn->bhmn', {'b': 2, 'h': 2, 'm': 256, 'k': 256, 'n': 256}, {'H': 1, 'M': 32, 'K': 32})
|
||
|
test_expr('bhmk,bHKN->bhmn', {'b': 2, 'h': 2, 'm': 256, 'k': 256, 'n': 256}, {'H': 1, 'K': 32, 'N': 32})
|
||
|
test_expr('bhmk,bhkn->bHMN', {'b': 2, 'h': 2, 'm': 256, 'k': 256, 'n': 256}, {'H': 1, 'M': 32, 'N': 32})
|
||
|
|