Packaging: polished
This commit is contained in:
27
python/external/boost/libs/numpy/src/CMakeLists.txt
vendored
Normal file
27
python/external/boost/libs/numpy/src/CMakeLists.txt
vendored
Normal file
@@ -0,0 +1,27 @@
|
||||
add_library(boost_numpy ${LIBRARY_TYPE}
|
||||
# header files
|
||||
../../../boost/numpy/dtype.hpp
|
||||
../../../boost/numpy/internal.hpp
|
||||
../../../boost/numpy/invoke_matching.hpp
|
||||
../../../boost/numpy/matrix.hpp
|
||||
../../../boost/numpy/ndarray.hpp
|
||||
../../../boost/numpy/numpy_object_mgr_traits.hpp
|
||||
../../../boost/numpy/scalars.hpp
|
||||
../../../boost/numpy/ufunc.hpp
|
||||
|
||||
# source files (in current directory)
|
||||
dtype.cpp
|
||||
scalars.cpp
|
||||
ndarray.cpp
|
||||
matrix.cpp
|
||||
ufunc.cpp
|
||||
numpy.cpp
|
||||
)
|
||||
|
||||
TARGET_LINK_LIBRARIES(boost_numpy ${Boost_LIBRARIES})
|
||||
|
||||
install(TARGETS boost_numpy
|
||||
ARCHIVE DESTINATION lib
|
||||
LIBRARY DESTINATION lib
|
||||
PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE
|
||||
)
|
64
python/external/boost/libs/numpy/src/Jamfile
vendored
Normal file
64
python/external/boost/libs/numpy/src/Jamfile
vendored
Normal file
@@ -0,0 +1,64 @@
|
||||
import python ;
|
||||
#import numpy ;
|
||||
import regex ;
|
||||
using python ;
|
||||
|
||||
libraries = ;
|
||||
|
||||
if [ python.configured ]
|
||||
{
|
||||
|
||||
project boost/numpy
|
||||
: source-location .
|
||||
# : requirements
|
||||
;
|
||||
|
||||
lib boost_python ;
|
||||
|
||||
rule numpy-includes ( properties * )
|
||||
{
|
||||
import feature ;
|
||||
local python-interpreter = [ feature.get-values python.interpreter : $(properties) ] ;
|
||||
if $(python-interpreter)
|
||||
{
|
||||
local full-cmd =
|
||||
$(python-interpreter)" -c \"from numpy.distutils import misc_util; print ':'.join(misc_util.get_numpy_include_dirs())\" " ;
|
||||
local output = [ SHELL $(full-cmd) ] ;
|
||||
local includes = [ regex.split $(output) ":" ] ;
|
||||
return <include>$(includes) ;
|
||||
}
|
||||
}
|
||||
|
||||
lib boost_numpy
|
||||
: # sources
|
||||
dtype.cpp
|
||||
scalars.cpp
|
||||
ndarray.cpp
|
||||
matrix.cpp
|
||||
ufunc.cpp
|
||||
numpy.cpp
|
||||
: # requirements
|
||||
<library>/python//python_for_extensions
|
||||
#<library>/boost/python//boost_python
|
||||
<library>boost_python
|
||||
<conditional>@numpy-includes
|
||||
: # default build
|
||||
<link>shared
|
||||
: # usage requirements
|
||||
<conditional>@numpy-includes
|
||||
;
|
||||
|
||||
libraries += boost_numpy ;
|
||||
|
||||
}
|
||||
else if ! ( --without-python in [ modules.peek : ARGV ] )
|
||||
{
|
||||
message boost_numpy
|
||||
: "warning: No python installation configured and autoconfiguration"
|
||||
: "note: failed. See http://www.boost.org/libs/python/doc/building.html"
|
||||
: "note: for configuration instructions or pass --without-python to"
|
||||
: "note: suppress this message and silently skip all Boost.NumPy targets"
|
||||
;
|
||||
}
|
||||
|
||||
#boost-install $(libraries) ;
|
12
python/external/boost/libs/numpy/src/SConscript
vendored
Normal file
12
python/external/boost/libs/numpy/src/SConscript
vendored
Normal file
@@ -0,0 +1,12 @@
|
||||
# -*- python -*-
|
||||
|
||||
# Copyright Jim Bosch 2010-2012.
|
||||
# Distributed under the Boost Software License, Version 1.0.
|
||||
# (See accompanying file LICENSE_1_0.txt or copy at
|
||||
# http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
Import("env")
|
||||
|
||||
lib = env.SharedLibrary("boost_numpy", Glob("*.cpp"))
|
||||
|
||||
Return("lib")
|
164
python/external/boost/libs/numpy/src/dtype.cpp
vendored
Normal file
164
python/external/boost/libs/numpy/src/dtype.cpp
vendored
Normal file
@@ -0,0 +1,164 @@
|
||||
// Copyright Jim Bosch 2010-2012.
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_NUMPY_INTERNAL
|
||||
#include <boost/numpy/internal.hpp>
|
||||
|
||||
#define DTYPE_FROM_CODE(code) \
|
||||
dtype(python::detail::new_reference(reinterpret_cast<PyObject*>(PyArray_DescrFromType(code))))
|
||||
|
||||
#define BUILTIN_INT_DTYPE(bits) \
|
||||
template <> struct builtin_int_dtype< bits, false > { \
|
||||
static dtype get() { return DTYPE_FROM_CODE(NPY_INT ## bits); } \
|
||||
}; \
|
||||
template <> struct builtin_int_dtype< bits, true > { \
|
||||
static dtype get() { return DTYPE_FROM_CODE(NPY_UINT ## bits); } \
|
||||
}; \
|
||||
template dtype get_int_dtype< bits, false >(); \
|
||||
template dtype get_int_dtype< bits, true >()
|
||||
|
||||
#define BUILTIN_FLOAT_DTYPE(bits) \
|
||||
template <> struct builtin_float_dtype< bits > { \
|
||||
static dtype get() { return DTYPE_FROM_CODE(NPY_FLOAT ## bits); } \
|
||||
}; \
|
||||
template dtype get_float_dtype< bits >()
|
||||
|
||||
#define BUILTIN_COMPLEX_DTYPE(bits) \
|
||||
template <> struct builtin_complex_dtype< bits > { \
|
||||
static dtype get() { return DTYPE_FROM_CODE(NPY_COMPLEX ## bits); } \
|
||||
}; \
|
||||
template dtype get_complex_dtype< bits >()
|
||||
|
||||
namespace boost { namespace python { namespace converter {
|
||||
NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayDescr_Type, numpy::dtype)
|
||||
}}} // namespace boost::python::converter
|
||||
|
||||
namespace boost { namespace numpy {
|
||||
|
||||
namespace detail {
|
||||
|
||||
dtype builtin_dtype<bool,true>::get() { return DTYPE_FROM_CODE(NPY_BOOL); }
|
||||
|
||||
template <int bits, bool isUnsigned> struct builtin_int_dtype;
|
||||
template <int bits> struct builtin_float_dtype;
|
||||
template <int bits> struct builtin_complex_dtype;
|
||||
|
||||
template <int bits, bool isUnsigned> dtype get_int_dtype() {
|
||||
return builtin_int_dtype<bits,isUnsigned>::get();
|
||||
}
|
||||
template <int bits> dtype get_float_dtype() { return builtin_float_dtype<bits>::get(); }
|
||||
template <int bits> dtype get_complex_dtype() { return builtin_complex_dtype<bits>::get(); }
|
||||
|
||||
BUILTIN_INT_DTYPE(8);
|
||||
BUILTIN_INT_DTYPE(16);
|
||||
BUILTIN_INT_DTYPE(32);
|
||||
BUILTIN_INT_DTYPE(64);
|
||||
BUILTIN_FLOAT_DTYPE(32);
|
||||
BUILTIN_FLOAT_DTYPE(64);
|
||||
BUILTIN_COMPLEX_DTYPE(64);
|
||||
BUILTIN_COMPLEX_DTYPE(128);
|
||||
#if NPY_BITSOF_LONGDOUBLE > NPY_BITSOF_DOUBLE
|
||||
template <> struct builtin_float_dtype< NPY_BITSOF_LONGDOUBLE > {
|
||||
static dtype get() { return DTYPE_FROM_CODE(NPY_LONGDOUBLE); }
|
||||
};
|
||||
template dtype get_float_dtype< NPY_BITSOF_LONGDOUBLE >();
|
||||
template <> struct builtin_complex_dtype< 2 * NPY_BITSOF_LONGDOUBLE > {
|
||||
static dtype get() { return DTYPE_FROM_CODE(NPY_CLONGDOUBLE); }
|
||||
};
|
||||
template dtype get_complex_dtype< 2 * NPY_BITSOF_LONGDOUBLE >();
|
||||
#endif
|
||||
|
||||
} // namespace detail
|
||||
|
||||
python::detail::new_reference dtype::convert(python::object const & arg, bool align) {
|
||||
PyArray_Descr* obj=NULL;
|
||||
if (align) {
|
||||
if (PyArray_DescrAlignConverter(arg.ptr(), &obj) < 0)
|
||||
python::throw_error_already_set();
|
||||
} else {
|
||||
if (PyArray_DescrConverter(arg.ptr(), &obj) < 0)
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
return python::detail::new_reference(reinterpret_cast<PyObject*>(obj));
|
||||
}
|
||||
|
||||
int dtype::get_itemsize() const { return reinterpret_cast<PyArray_Descr*>(ptr())->elsize;}
|
||||
|
||||
bool equivalent(dtype const & a, dtype const & b) {
|
||||
return PyArray_EquivTypes(
|
||||
reinterpret_cast<PyArray_Descr*>(a.ptr()),
|
||||
reinterpret_cast<PyArray_Descr*>(b.ptr())
|
||||
);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
namespace pyconv = boost::python::converter;
|
||||
|
||||
template <typename T>
|
||||
class array_scalar_converter {
|
||||
public:
|
||||
|
||||
static PyTypeObject const * get_pytype() {
|
||||
// This implementation depends on the fact that get_builtin returns pointers to objects
|
||||
// NumPy has declared statically, and that the typeobj member also refers to a static
|
||||
// object. That means we don't need to do any reference counting.
|
||||
// In fact, I'm somewhat concerned that increasing the reference count of any of these
|
||||
// might cause leaks, because I don't think Boost.Python ever decrements it, but it's
|
||||
// probably a moot point if everything is actually static.
|
||||
return reinterpret_cast<PyArray_Descr*>(dtype::get_builtin<T>().ptr())->typeobj;
|
||||
}
|
||||
|
||||
static void * convertible(PyObject * obj) {
|
||||
if (obj->ob_type == get_pytype()) {
|
||||
return obj;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static void convert(PyObject * obj, pyconv::rvalue_from_python_stage1_data* data) {
|
||||
void * storage = reinterpret_cast<pyconv::rvalue_from_python_storage<T>*>(data)->storage.bytes;
|
||||
// We assume std::complex is a "standard layout" here and elsewhere; not guaranteed by
|
||||
// C++03 standard, but true in every known implementation (and guaranteed by C++11).
|
||||
PyArray_ScalarAsCtype(obj, reinterpret_cast<T*>(storage));
|
||||
data->convertible = storage;
|
||||
}
|
||||
|
||||
static void declare() {
|
||||
pyconv::registry::push_back(
|
||||
&convertible, &convert, python::type_id<T>()
|
||||
#ifndef BOOST_PYTHON_NO_PY_SIGNATURES
|
||||
, &get_pytype
|
||||
#endif
|
||||
);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
} // anonymous
|
||||
|
||||
void dtype::register_scalar_converters() {
|
||||
array_scalar_converter<bool>::declare();
|
||||
array_scalar_converter<npy_uint8>::declare();
|
||||
array_scalar_converter<npy_int8>::declare();
|
||||
array_scalar_converter<npy_uint16>::declare();
|
||||
array_scalar_converter<npy_int16>::declare();
|
||||
array_scalar_converter<npy_uint32>::declare();
|
||||
array_scalar_converter<npy_int32>::declare();
|
||||
array_scalar_converter<npy_uint64>::declare();
|
||||
array_scalar_converter<npy_int64>::declare();
|
||||
array_scalar_converter<float>::declare();
|
||||
array_scalar_converter<double>::declare();
|
||||
array_scalar_converter< std::complex<float> >::declare();
|
||||
array_scalar_converter< std::complex<double> >::declare();
|
||||
#if NPY_BITSOF_LONGDOUBLE > NPY_BITSOF_DOUBLE
|
||||
array_scalar_converter<long double>::declare();
|
||||
array_scalar_converter< std::complex<long double> >::declare();
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace boost::numpy
|
||||
} // namespace boost
|
68
python/external/boost/libs/numpy/src/matrix.cpp
vendored
Normal file
68
python/external/boost/libs/numpy/src/matrix.cpp
vendored
Normal file
@@ -0,0 +1,68 @@
|
||||
// Copyright Jim Bosch 2010-2012.
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_NUMPY_INTERNAL
|
||||
#include <boost/numpy/internal.hpp>
|
||||
#include <boost/numpy/matrix.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace numpy
|
||||
{
|
||||
namespace detail
|
||||
{
|
||||
inline python::object get_matrix_type()
|
||||
{
|
||||
python::object module = python::import("numpy");
|
||||
return module.attr("matrix");
|
||||
}
|
||||
} // namespace boost::numpy::detail
|
||||
} // namespace boost::numpy
|
||||
|
||||
namespace python
|
||||
{
|
||||
namespace converter
|
||||
{
|
||||
|
||||
PyTypeObject const * object_manager_traits<numpy::matrix>::get_pytype()
|
||||
{
|
||||
return reinterpret_cast<PyTypeObject*>(numpy::detail::get_matrix_type().ptr());
|
||||
}
|
||||
|
||||
} // namespace boost::python::converter
|
||||
} // namespace boost::python
|
||||
|
||||
namespace numpy
|
||||
{
|
||||
|
||||
python::object matrix::construct(python::object const & obj, dtype const & dt, bool copy)
|
||||
{
|
||||
return numpy::detail::get_matrix_type()(obj, dt, copy);
|
||||
}
|
||||
|
||||
python::object matrix::construct(python::object const & obj, bool copy)
|
||||
{
|
||||
return numpy::detail::get_matrix_type()(obj, object(), copy);
|
||||
}
|
||||
|
||||
matrix matrix::view(dtype const & dt) const
|
||||
{
|
||||
return matrix(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
|
||||
}
|
||||
|
||||
matrix matrix::copy() const
|
||||
{
|
||||
return matrix(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
|
||||
}
|
||||
|
||||
matrix matrix::transpose() const
|
||||
{
|
||||
return matrix(python::extract<matrix>(ndarray::transpose()));
|
||||
}
|
||||
|
||||
} // namespace boost::numpy
|
||||
} // namespace boost
|
281
python/external/boost/libs/numpy/src/ndarray.cpp
vendored
Normal file
281
python/external/boost/libs/numpy/src/ndarray.cpp
vendored
Normal file
@@ -0,0 +1,281 @@
|
||||
// Copyright Jim Bosch 2010-2012.
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_NUMPY_INTERNAL
|
||||
#include <boost/numpy/internal.hpp>
|
||||
#include <boost/scoped_array.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace python
|
||||
{
|
||||
namespace converter
|
||||
{
|
||||
NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArray_Type, numpy::ndarray)
|
||||
} // namespace boost::python::converter
|
||||
} // namespace boost::python
|
||||
|
||||
namespace numpy
|
||||
{
|
||||
namespace detail
|
||||
{
|
||||
|
||||
ndarray::bitflag numpy_to_bitflag(int const f)
|
||||
{
|
||||
ndarray::bitflag r = ndarray::NONE;
|
||||
if (f & NPY_C_CONTIGUOUS) r = (r | ndarray::C_CONTIGUOUS);
|
||||
if (f & NPY_F_CONTIGUOUS) r = (r | ndarray::F_CONTIGUOUS);
|
||||
if (f & NPY_ALIGNED) r = (r | ndarray::ALIGNED);
|
||||
if (f & NPY_WRITEABLE) r = (r | ndarray::WRITEABLE);
|
||||
return r;
|
||||
}
|
||||
|
||||
int const bitflag_to_numpy(ndarray::bitflag f)
|
||||
{
|
||||
int r = 0;
|
||||
if (f & ndarray::C_CONTIGUOUS) r |= NPY_C_CONTIGUOUS;
|
||||
if (f & ndarray::F_CONTIGUOUS) r |= NPY_F_CONTIGUOUS;
|
||||
if (f & ndarray::ALIGNED) r |= NPY_ALIGNED;
|
||||
if (f & ndarray::WRITEABLE) r |= NPY_WRITEABLE;
|
||||
return r;
|
||||
}
|
||||
|
||||
bool is_c_contiguous(std::vector<Py_intptr_t> const & shape,
|
||||
std::vector<Py_intptr_t> const & strides,
|
||||
int itemsize)
|
||||
{
|
||||
std::vector<Py_intptr_t>::const_reverse_iterator j = strides.rbegin();
|
||||
int total = itemsize;
|
||||
for (std::vector<Py_intptr_t>::const_reverse_iterator i = shape.rbegin(); i != shape.rend(); ++i, ++j)
|
||||
{
|
||||
if (total != *j) return false;
|
||||
total *= (*i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool is_f_contiguous(std::vector<Py_intptr_t> const & shape,
|
||||
std::vector<Py_intptr_t> const & strides,
|
||||
int itemsize)
|
||||
{
|
||||
std::vector<Py_intptr_t>::const_iterator j = strides.begin();
|
||||
int total = itemsize;
|
||||
for (std::vector<Py_intptr_t>::const_iterator i = shape.begin(); i != shape.end(); ++i, ++j)
|
||||
{
|
||||
if (total != *j) return false;
|
||||
total *= (*i);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool is_aligned(std::vector<Py_intptr_t> const & strides,
|
||||
int itemsize)
|
||||
{
|
||||
for (std::vector<Py_intptr_t>::const_iterator i = strides.begin(); i != strides.end(); ++i)
|
||||
{
|
||||
if (*i % itemsize) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline PyArray_Descr * incref_dtype(dtype const & dt)
|
||||
{
|
||||
Py_INCREF(dt.ptr());
|
||||
return reinterpret_cast<PyArray_Descr*>(dt.ptr());
|
||||
}
|
||||
|
||||
ndarray from_data_impl(void * data,
|
||||
dtype const & dt,
|
||||
python::object const & shape,
|
||||
python::object const & strides,
|
||||
python::object const & owner,
|
||||
bool writeable)
|
||||
{
|
||||
std::vector<Py_intptr_t> shape_(len(shape));
|
||||
std::vector<Py_intptr_t> strides_(len(strides));
|
||||
if (shape_.size() != strides_.size())
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
for (std::size_t i = 0; i < shape_.size(); ++i)
|
||||
{
|
||||
shape_[i] = python::extract<Py_intptr_t>(shape[i]);
|
||||
strides_[i] = python::extract<Py_intptr_t>(strides[i]);
|
||||
}
|
||||
return from_data_impl(data, dt, shape_, strides_, owner, writeable);
|
||||
}
|
||||
|
||||
ndarray from_data_impl(void * data,
|
||||
dtype const & dt,
|
||||
std::vector<Py_intptr_t> const & shape,
|
||||
std::vector<Py_intptr_t> const & strides,
|
||||
python::object const & owner,
|
||||
bool writeable)
|
||||
{
|
||||
if (shape.size() != strides.size())
|
||||
{
|
||||
PyErr_SetString(PyExc_ValueError, "Length of shape and strides arrays do not match.");
|
||||
python::throw_error_already_set();
|
||||
}
|
||||
int itemsize = dt.get_itemsize();
|
||||
int flags = 0;
|
||||
if (writeable) flags |= NPY_WRITEABLE;
|
||||
if (is_c_contiguous(shape, strides, itemsize)) flags |= NPY_C_CONTIGUOUS;
|
||||
if (is_f_contiguous(shape, strides, itemsize)) flags |= NPY_F_CONTIGUOUS;
|
||||
if (is_aligned(strides, itemsize)) flags |= NPY_ALIGNED;
|
||||
ndarray r(python::detail::new_reference
|
||||
(PyArray_NewFromDescr(&PyArray_Type,
|
||||
incref_dtype(dt),
|
||||
shape.size(),
|
||||
const_cast<Py_intptr_t*>(&shape.front()),
|
||||
const_cast<Py_intptr_t*>(&strides.front()),
|
||||
data,
|
||||
flags,
|
||||
NULL)));
|
||||
r.set_base(owner);
|
||||
return r;
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
ndarray ndarray::view(dtype const & dt) const
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
|
||||
}
|
||||
|
||||
ndarray ndarray::astype(dtype const & dt) const
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("astype"), const_cast<char*>("O"), dt.ptr())));
|
||||
}
|
||||
|
||||
ndarray ndarray::copy() const
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
|
||||
}
|
||||
|
||||
dtype ndarray::get_dtype() const
|
||||
{
|
||||
return dtype(python::detail::borrowed_reference(get_struct()->descr));
|
||||
}
|
||||
|
||||
python::object ndarray::get_base() const
|
||||
{
|
||||
if (get_struct()->base == NULL) return object();
|
||||
return python::object(python::detail::borrowed_reference(get_struct()->base));
|
||||
}
|
||||
|
||||
void ndarray::set_base(object const & base)
|
||||
{
|
||||
Py_XDECREF(get_struct()->base);
|
||||
if (base != object())
|
||||
{
|
||||
Py_INCREF(base.ptr());
|
||||
get_struct()->base = base.ptr();
|
||||
}
|
||||
else
|
||||
{
|
||||
get_struct()->base = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
ndarray::bitflag const ndarray::get_flags() const
|
||||
{
|
||||
return numpy::detail::numpy_to_bitflag(get_struct()->flags);
|
||||
}
|
||||
|
||||
ndarray ndarray::transpose() const
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Transpose(reinterpret_cast<PyArrayObject*>(this->ptr()), NULL)));
|
||||
}
|
||||
|
||||
ndarray ndarray::squeeze() const
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(this->ptr()))));
|
||||
}
|
||||
|
||||
ndarray ndarray::reshape(python::tuple const & shape) const
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Reshape(reinterpret_cast<PyArrayObject*>(this->ptr()), shape.ptr())));
|
||||
}
|
||||
|
||||
python::object ndarray::scalarize() const
|
||||
{
|
||||
Py_INCREF(ptr());
|
||||
return python::object(python::detail::new_reference(PyArray_Return(reinterpret_cast<PyArrayObject*>(ptr()))));
|
||||
}
|
||||
|
||||
ndarray zeros(python::tuple const & shape, dtype const & dt)
|
||||
{
|
||||
int nd = len(shape);
|
||||
boost::scoped_array<Py_intptr_t> dims(new Py_intptr_t[nd]);
|
||||
for (int n=0; n<nd; ++n) dims[n] = python::extract<Py_intptr_t>(shape[n]);
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Zeros(nd, dims.get(), detail::incref_dtype(dt), 0)));
|
||||
}
|
||||
|
||||
ndarray zeros(int nd, Py_intptr_t const * shape, dtype const & dt)
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Zeros(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)));
|
||||
}
|
||||
|
||||
ndarray empty(python::tuple const & shape, dtype const & dt)
|
||||
{
|
||||
int nd = len(shape);
|
||||
boost::scoped_array<Py_intptr_t> dims(new Py_intptr_t[nd]);
|
||||
for (int n=0; n<nd; ++n) dims[n] = python::extract<Py_intptr_t>(shape[n]);
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Empty(nd, dims.get(), detail::incref_dtype(dt), 0)));
|
||||
}
|
||||
|
||||
ndarray empty(int nd, Py_intptr_t const * shape, dtype const & dt)
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_Empty(nd, const_cast<Py_intptr_t*>(shape), detail::incref_dtype(dt), 0)));
|
||||
}
|
||||
|
||||
ndarray array(python::object const & obj)
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_FromAny(obj.ptr(), NULL, 0, 0, NPY_ENSUREARRAY, NULL)));
|
||||
}
|
||||
|
||||
ndarray array(python::object const & obj, dtype const & dt)
|
||||
{
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_FromAny(obj.ptr(), detail::incref_dtype(dt), 0, 0, NPY_ENSUREARRAY, NULL)));
|
||||
}
|
||||
|
||||
ndarray from_object(python::object const & obj, dtype const & dt, int nd_min, int nd_max, ndarray::bitflag flags)
|
||||
{
|
||||
int requirements = detail::bitflag_to_numpy(flags);
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_FromAny(obj.ptr(),
|
||||
detail::incref_dtype(dt),
|
||||
nd_min, nd_max,
|
||||
requirements,
|
||||
NULL)));
|
||||
}
|
||||
|
||||
ndarray from_object(python::object const & obj, int nd_min, int nd_max, ndarray::bitflag flags)
|
||||
{
|
||||
int requirements = detail::bitflag_to_numpy(flags);
|
||||
return ndarray(python::detail::new_reference
|
||||
(PyArray_FromAny(obj.ptr(),
|
||||
NULL,
|
||||
nd_min, nd_max,
|
||||
requirements,
|
||||
NULL)));
|
||||
}
|
||||
|
||||
}
|
||||
}
|
34
python/external/boost/libs/numpy/src/numpy.cpp
vendored
Normal file
34
python/external/boost/libs/numpy/src/numpy.cpp
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
// Copyright Jim Bosch 2010-2012.
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_NUMPY_INTERNAL_MAIN
|
||||
#include <boost/numpy/internal.hpp>
|
||||
#include <boost/numpy/dtype.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace numpy
|
||||
{
|
||||
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
int
|
||||
#else
|
||||
void
|
||||
#endif
|
||||
do_import_array()
|
||||
{
|
||||
import_array();
|
||||
}
|
||||
|
||||
void initialize(bool register_scalar_converters)
|
||||
{
|
||||
do_import_array();
|
||||
import_ufunc();
|
||||
if (register_scalar_converters)
|
||||
dtype::register_scalar_converters();
|
||||
}
|
||||
|
||||
}
|
||||
}
|
40
python/external/boost/libs/numpy/src/scalars.cpp
vendored
Normal file
40
python/external/boost/libs/numpy/src/scalars.cpp
vendored
Normal file
@@ -0,0 +1,40 @@
|
||||
// Copyright Jim Bosch 2010-2012.
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_NUMPY_INTERNAL
|
||||
#include <boost/numpy/internal.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace python
|
||||
{
|
||||
namespace converter
|
||||
{
|
||||
NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyVoidArrType_Type, numpy::void_)
|
||||
} // namespace boost::python::converter
|
||||
} // namespace boost::python
|
||||
|
||||
namespace numpy
|
||||
{
|
||||
|
||||
void_::void_(Py_ssize_t size)
|
||||
: object(python::detail::new_reference
|
||||
(PyObject_CallFunction((PyObject*)&PyVoidArrType_Type, const_cast<char*>("i"), size)))
|
||||
{}
|
||||
|
||||
void_ void_::view(dtype const & dt) const
|
||||
{
|
||||
return void_(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("view"), const_cast<char*>("O"), dt.ptr())));
|
||||
}
|
||||
|
||||
void_ void_::copy() const
|
||||
{
|
||||
return void_(python::detail::new_reference
|
||||
(PyObject_CallMethod(this->ptr(), const_cast<char*>("copy"), const_cast<char*>(""))));
|
||||
}
|
||||
|
||||
}
|
||||
}
|
69
python/external/boost/libs/numpy/src/ufunc.cpp
vendored
Normal file
69
python/external/boost/libs/numpy/src/ufunc.cpp
vendored
Normal file
@@ -0,0 +1,69 @@
|
||||
// Copyright Jim Bosch 2010-2012.
|
||||
// Distributed under the Boost Software License, Version 1.0.
|
||||
// (See accompanying file LICENSE_1_0.txt or copy at
|
||||
// http://www.boost.org/LICENSE_1_0.txt)
|
||||
|
||||
#define BOOST_NUMPY_INTERNAL
|
||||
#include <boost/numpy/internal.hpp>
|
||||
#include <boost/numpy/ufunc.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace python
|
||||
{
|
||||
namespace converter
|
||||
{
|
||||
NUMPY_OBJECT_MANAGER_TRAITS_IMPL(PyArrayMultiIter_Type, numpy::multi_iter)
|
||||
} // namespace boost::python::converter
|
||||
} // namespace boost::python
|
||||
|
||||
namespace numpy
|
||||
{
|
||||
|
||||
multi_iter make_multi_iter(python::object const & a1)
|
||||
{
|
||||
return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(1, a1.ptr())));
|
||||
}
|
||||
|
||||
multi_iter make_multi_iter(python::object const & a1, python::object const & a2)
|
||||
{
|
||||
return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(2, a1.ptr(), a2.ptr())));
|
||||
}
|
||||
|
||||
multi_iter make_multi_iter(python::object const & a1, python::object const & a2, python::object const & a3)
|
||||
{
|
||||
return multi_iter(python::detail::new_reference(PyArray_MultiIterNew(3, a1.ptr(), a2.ptr(), a3.ptr())));
|
||||
}
|
||||
|
||||
void multi_iter::next()
|
||||
{
|
||||
PyArray_MultiIter_NEXT(ptr());
|
||||
}
|
||||
|
||||
bool multi_iter::not_done() const
|
||||
{
|
||||
return PyArray_MultiIter_NOTDONE(ptr());
|
||||
}
|
||||
|
||||
char * multi_iter::get_data(int i) const
|
||||
{
|
||||
return reinterpret_cast<char*>(PyArray_MultiIter_DATA(ptr(), i));
|
||||
}
|
||||
|
||||
int const multi_iter::get_nd() const
|
||||
{
|
||||
return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->nd;
|
||||
}
|
||||
|
||||
Py_intptr_t const * multi_iter::get_shape() const
|
||||
{
|
||||
return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions;
|
||||
}
|
||||
|
||||
Py_intptr_t const multi_iter::shape(int n) const
|
||||
{
|
||||
return reinterpret_cast<PyArrayMultiIterObject*>(ptr())->dimensions[n];
|
||||
}
|
||||
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user