[FRONTEND] Added compilation flag to force use of .nc
cache modifier (#134)
in DRAM loads. /!\ USE CAREFULLY - THIS CAN BREAK CORRECTNESS IF MISUSED /!\
This commit is contained in:
committed by
Philippe Tillet
parent
2824345065
commit
01276b5153
@@ -78,11 +78,11 @@ void init_triton_driver(py::module &&m) {
|
||||
|
||||
void init_triton_codegen(py::module &&m) {
|
||||
m.def(
|
||||
"add_passes_to_emit_bin", [](ir::module &ir, drv::device *dev, int num_warps, int num_stages) {
|
||||
"add_passes_to_emit_bin", [](ir::module &ir, drv::device *dev, int num_warps, int num_stages, bool force_nc_cache) {
|
||||
drv::module *mod;
|
||||
drv::kernel *ker;
|
||||
size_t shared_mem;
|
||||
triton::codegen::add_passes_to_emit_bin(ir, dev, num_warps, num_stages, mod, ker, shared_mem);
|
||||
triton::codegen::add_passes_to_emit_bin(ir, dev, num_warps, num_stages, force_nc_cache, mod, ker, shared_mem);
|
||||
std::stringstream ss;
|
||||
ir::print(ir, ss);
|
||||
return std::make_tuple(mod, ker, shared_mem, ss.str());
|
||||
|
@@ -408,7 +408,7 @@ class CodeGenerator(ast.NodeVisitor):
|
||||
|
||||
|
||||
class Binary:
|
||||
def __init__(self, module, kernel, num_warps, num_stages, shared_mem, ir_asm):
|
||||
def __init__(self, module, kernel, num_warps, num_stages, force_nc_cache, shared_mem, ir_asm):
|
||||
# cache ir asm
|
||||
self.ir_asm = ir_asm
|
||||
self.module = module
|
||||
@@ -416,6 +416,7 @@ class Binary:
|
||||
self.shared_mem = shared_mem
|
||||
self.num_warps = num_warps
|
||||
self.num_stages = num_stages
|
||||
self.force_nc_cache = force_nc_cache
|
||||
self.sass = None
|
||||
|
||||
def asm(self, mode):
|
||||
@@ -524,7 +525,7 @@ class Kernel:
|
||||
def __init__(self, fn):
|
||||
self.fn = fn
|
||||
|
||||
def _compile(self, *wargs, device, attributes, constants, num_warps, num_stages, **meta):
|
||||
def _compile(self, *wargs, device, attributes, constants, num_warps, num_stages, force_nc_cache, **meta):
|
||||
# explicitly set device
|
||||
torch.cuda.set_device(device.index)
|
||||
# create IR module
|
||||
@@ -546,12 +547,12 @@ class Kernel:
|
||||
raise CompilationError(self.fn.src, node, e)
|
||||
tt_device = _triton.driver.cu_device(device.index, False)
|
||||
# Compile to machine code
|
||||
mod, ker, shared_mem, ir_asm = _triton.code_gen.add_passes_to_emit_bin(generator.module, tt_device, num_warps, num_stages)
|
||||
mod, ker, shared_mem, ir_asm = _triton.code_gen.add_passes_to_emit_bin(generator.module, tt_device, num_warps, num_stages, force_nc_cache)
|
||||
if shared_mem > tt_device.max_shared_memory():
|
||||
raise OutOfResources(shared_mem, tt_device.max_shared_memory(), "shared memory")
|
||||
return Binary(mod, ker, num_warps, num_stages, shared_mem, ir_asm)
|
||||
return Binary(mod, ker, num_warps, num_stages, force_nc_cache, shared_mem, ir_asm)
|
||||
|
||||
def __call__(self, *wargs, grid, num_warps=4, num_stages=2, **meta):
|
||||
def __call__(self, *wargs, grid, num_warps=4, num_stages=2, force_nc_cache=False, **meta):
|
||||
# device inference
|
||||
tensor_idxs = [i for i, arg in enumerate(wargs) if hasattr(arg, 'data_ptr')]
|
||||
if len(tensor_idxs) == 0:
|
||||
@@ -573,7 +574,9 @@ class Kernel:
|
||||
if key not in cache:
|
||||
# compile and cache configuration if necessary
|
||||
cache[key] = self._compile(
|
||||
*wargs, device=device, attributes=attributes, num_warps=num_warps, num_stages=num_stages, constants=constants, **meta
|
||||
*wargs, device=device, attributes=attributes,
|
||||
num_warps=num_warps, num_stages=num_stages, force_nc_cache=force_nc_cache,
|
||||
constants=constants, **meta
|
||||
)
|
||||
# pack arguments
|
||||
fmt = ''.join(['P' if i in tensor_idxs else Kernel._type_name(arg.__class__) for i, arg in enumerate(wargs)])
|
||||
|
@@ -183,7 +183,7 @@ class _softmax(torch.autograd.Function):
|
||||
}
|
||||
grid = lambda opt: [spdims[0] * spdims[1] * block, M]
|
||||
_forward[grid](x, scale, lut, rpe, key_padding_mask, attn_mask, maxlut, x.stride(0),\
|
||||
stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm, **meta)
|
||||
stride_zrpe, stride_hrpe, stride_srpe, stride_zkpm, stride_zattnm, force_nc_cache=True, **meta)
|
||||
|
||||
# save to context
|
||||
ctx.mark_dirty(x)
|
||||
@@ -207,7 +207,7 @@ class _softmax(torch.autograd.Function):
|
||||
# run kernel
|
||||
M = x.shape[0]
|
||||
grid = lambda opt: [ctx.spdims[0] * ctx.spdims[1] * ctx.block, M]
|
||||
_backward[grid](x, ctx.scale, dx, lut, ctx.maxlut, x.stride(0), dx.stride(0), BLOCK=ctx.block)
|
||||
_backward[grid](x, ctx.scale, dx, lut, ctx.maxlut, x.stride(0), dx.stride(0), force_nc_cache=True, BLOCK=ctx.block)
|
||||
return dx, None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user