Analyze shared memory alias (#81)
The purpose of this PR is analyzing shared memory aliases so that we can fix memory allocation bugs and save memory allocations in triton code involving complex control flows. Changes to memory bar and allocation are on the way. Co-authored-by: Philippe Tillet <phil@openai.com>
This commit is contained in:
@@ -151,21 +151,17 @@ func @longlive(%A : !tt.ptr<f16>) {
|
||||
|
||||
// CHECK-LABEL: scratch
|
||||
func @scratch() {
|
||||
// CHECK: offset = 0, size = 512
|
||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||
// CHECK-NEXT: offset = 1056, size = 1024
|
||||
%a = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
|
||||
// CHECK-NEXT: scratch offset = 32, size = 1024
|
||||
// CHECK-NEXT: offset = 0, size = 32
|
||||
%b = tt.reduce %a {redOp = 1 : i32, axis = 0 : i32} : tensor<32x16xf16, #A> -> tensor<16xf16, #A>
|
||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
|
||||
// CHECK: scratch offset = 0, size = 512
|
||||
%b = tt.reduce %cst0 {redOp = 1 : i32, axis = 0 : i32} : tensor<16x16xf16, #AL> -> tensor<16xf16, #AL>
|
||||
return
|
||||
// CHECK-NEXT: size = 2080
|
||||
// CHECK-NEXT: size = 512
|
||||
}
|
||||
|
||||
// B0 -> (B1) -> B0
|
||||
// Memory used by B1 can be reused by B0.
|
||||
// CHECK-LABEL: multi_blocks_reuse
|
||||
func @multi_blocks_reuse(%i1 : i1) {
|
||||
// CHECK-LABEL: if
|
||||
func @if(%i1 : i1) {
|
||||
// CHECK: offset = 0, size = 512
|
||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||
// CHECK-NEXT: offset = 512, size = 512
|
||||
@@ -188,8 +184,8 @@ func @multi_blocks_reuse(%i1 : i1) {
|
||||
|
||||
// B0 -> (B1) -> (B2) -> B0
|
||||
// Memory used by B0 cannot be reused by B1 or B2.
|
||||
// CHECK-LABEL: multi_blocks_noreuse
|
||||
func @multi_blocks_noreuse(%i1 : i1) {
|
||||
// CHECK-LABEL: if_else
|
||||
func @if_else(%i1 : i1) {
|
||||
// CHECK: offset = 0, size = 512
|
||||
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
|
||||
// CHECK-NEXT: offset = 512, size = 512
|
||||
@@ -212,3 +208,51 @@ func @multi_blocks_noreuse(%i1 : i1) {
|
||||
return
|
||||
// CHECK-NEXT: size = 3072
|
||||
}
|
||||
|
||||
// Block arguments and yields are memory aliases that do not trigger a new
|
||||
// allocation.
|
||||
// CHECK-LABEL: for
|
||||
func @for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
|
||||
// CHECK: offset = 0, size = 8192
|
||||
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
// CHECK-NEXT: offset = 8192, size = 8192
|
||||
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
// CHECK-NEXT: offset = 16384, size = 8192
|
||||
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>) {
|
||||
scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>
|
||||
}
|
||||
return
|
||||
// CHECK-NEXT: size = 24576
|
||||
}
|
||||
|
||||
// a_shared_init, b_shared_init, and c_shared_init's liveness ranges are span over the entire function before cst2.
|
||||
// So they cannot be reused by cst0 and cst1, but can be reused by cst2.
|
||||
// CHECK-LABEL: for_if_for
|
||||
func @for_if_for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {
|
||||
// CHECK: offset = 0, size = 8192
|
||||
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
// CHECK-NEXT: offset = 8192, size = 8192
|
||||
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
// CHECK-NEXT: offset = 16384, size = 8192
|
||||
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>) {
|
||||
%c_shared_next = scf.for %jv = %lb to %ub step %step iter_args(%c_shared_next = %c_shared) -> (tensor<128x32xf16, #A>) {
|
||||
%c_shared_next_next = scf.if %i1 -> tensor<128x32xf16, #A> {
|
||||
// CHECK-NEXT: offset = 24576, size = 8192
|
||||
%cst0 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
scf.yield %cst0 : tensor<128x32xf16, #A>
|
||||
} else {
|
||||
// CHECK-NEXT: offset = 32768, size = 8192
|
||||
%cst1 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
scf.yield %cst1 : tensor<128x32xf16, #A>
|
||||
}
|
||||
scf.yield %c_shared_next_next : tensor<128x32xf16, #A>
|
||||
}
|
||||
scf.yield %a_shared, %b_shared, %c_shared_next : tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>
|
||||
}
|
||||
// CHECK-NEXT: offset = 0, size = 8192
|
||||
%cst2 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
|
||||
return
|
||||
// CHECK-NEXT: size = 40960
|
||||
}
|
||||
|
Reference in New Issue
Block a user