[GENERAL] Various improvements:
* Sparse einsum in triton.ops.einsum * Hacky support for fixed-tile-size atomic-add * Various bugfixes in parser
This commit is contained in:
109
python/examples/test.py
Normal file
109
python/examples/test.py
Normal file
@@ -0,0 +1,109 @@
|
||||
import triton
|
||||
import numpy
|
||||
import torch
|
||||
import itertools
|
||||
|
||||
torch.manual_seed(0)
|
||||
numpy.random.seed(0)
|
||||
|
||||
def to_sparse(expr, data, layout, shape, block):
|
||||
# shape of result
|
||||
sparse = None
|
||||
shape_ret = []
|
||||
for i, d in enumerate(expr):
|
||||
if d.isupper() and sparse is None:
|
||||
sparse = i
|
||||
shape_ret.append(int(layout.sum()))
|
||||
if d.isupper():
|
||||
shape_ret.append(block[d])
|
||||
else:
|
||||
shape_ret.append(shape[i])
|
||||
# iterator
|
||||
steps = [block[d] if d.isupper() else 1 for d in expr]
|
||||
it = [range(0, shape[i], steps[i]) for i in range(len(expr))]
|
||||
# create result
|
||||
ret = torch.empty(*shape_ret, dtype=data.dtype, device=data.device)
|
||||
blockid = 0
|
||||
nzblockid = 0
|
||||
for curr in itertools.product(*it):
|
||||
if all([curr[i] == it[i][0] for i in range(len(curr)) if expr[i].isupper()]):
|
||||
blockid = 0
|
||||
nzblockid = 0
|
||||
data_slice = [slice(curr[i], curr[i] + steps[i], 1) for i in range(len(curr))]
|
||||
ret_slice = [slice(0, block[expr[i]], 1) if expr[i].isupper() else slice(curr[i], curr[i] + 1) for i in range(len(curr))]
|
||||
ret_slice.insert(sparse, nzblockid)
|
||||
if int(layout.view(-1)[blockid]):
|
||||
ret[ret_slice] = data[data_slice]
|
||||
nzblockid += 1
|
||||
blockid += 1
|
||||
return ret
|
||||
|
||||
def to_dense(expr, data, layout, shape, block):
|
||||
sparse = None
|
||||
for i, d in enumerate(expr):
|
||||
if d.isupper() and sparse is None:
|
||||
sparse = i
|
||||
|
||||
ret = torch.zeros(*shape, dtype=data.dtype, device=data.device)
|
||||
steps = [block[d] if d.isupper() else 1 for d in expr]
|
||||
it = [range(0, shape[i], steps[i]) for i in range(len(expr))]
|
||||
blockid = 0
|
||||
nzblockid = 0
|
||||
for curr in itertools.product(*it):
|
||||
if all([curr[i] == it[i][0] for i in range(len(curr)) if expr[i].isupper()]):
|
||||
blockid = 0
|
||||
nzblockid = 0
|
||||
ret_slice = [slice(curr[i], curr[i] + steps[i], 1) for i in range(len(curr))]
|
||||
data_slice = [slice(0, block[expr[i]], 1) if expr[i].isupper() else slice(curr[i], curr[i] + 1) for i in range(len(curr))]
|
||||
data_slice.insert(sparse, nzblockid)
|
||||
if int(layout.view(-1)[blockid]):
|
||||
ret[ret_slice] = data[data_slice]
|
||||
nzblockid += 1
|
||||
blockid += 1
|
||||
return ret
|
||||
|
||||
def test_expr(expr, shape, blocks):
|
||||
# decompose expr
|
||||
expr_a, expr_bc = expr.split(",")
|
||||
expr_b, expr_c = expr_bc.split("->")
|
||||
# check with argument is sparse
|
||||
sparse_a = any(x.isupper() for x in expr_a)
|
||||
sparse_b = any(x.isupper() for x in expr_b)
|
||||
sparse_c = any(x.isupper() for x in expr_c)
|
||||
# allocate data
|
||||
shape_a = [shape[d.lower()] for d in expr_a]
|
||||
shape_b = [shape[d.lower()] for d in expr_b]
|
||||
shape_c = [shape[d.lower()] for d in expr_c]
|
||||
ref_a = torch.rand(*shape_a, device='cuda')
|
||||
ref_b = torch.rand(*shape_b, device='cuda')
|
||||
ref_c = torch.zeros(*shape_c, device='cuda')
|
||||
# layouts
|
||||
layout_a = [shape[d.lower()]//blocks[d] for d in expr_a if d.isupper()]
|
||||
layout_b = [shape[d.lower()]//blocks[d] for d in expr_b if d.isupper()]
|
||||
layout_c = [shape[d.lower()]//blocks[d] for d in expr_c if d.isupper()]
|
||||
layout_a = torch.randint(0, 2, layout_a, device='cuda')
|
||||
layout_b = torch.randint(0, 2, layout_b, device='cuda')
|
||||
layout_c = torch.randint(0, 2, layout_c, device='cuda')
|
||||
# triton computation
|
||||
triton_a = to_sparse(expr_a, ref_a, layout_a, shape_a, blocks) if sparse_a else ref_a
|
||||
triton_b = to_sparse(expr_b, ref_b, layout_b, shape_b, blocks) if sparse_b else ref_b
|
||||
layouts = {expr_a: layout_a, expr_b: layout_b, expr_c: layout_c}
|
||||
triton_c = triton.ops.einsum(expr, triton_a, triton_b, layouts, blocks)
|
||||
torch.cuda.synchronize()
|
||||
# reference computation
|
||||
ref_a = to_dense(expr_a, triton_a, layout_a, shape_a, blocks) if sparse_a else ref_a
|
||||
ref_b = to_dense(expr_b, triton_b, layout_b, shape_b, blocks) if sparse_b else ref_b
|
||||
ref_c = torch.einsum(expr.lower(), ref_a, ref_b)
|
||||
if sparse_c:
|
||||
ref_c = to_sparse(expr_c, ref_c, layout_c, shape_c, blocks)
|
||||
torch.cuda.synchronize()
|
||||
print((ref_c - triton_c).abs().max())
|
||||
|
||||
|
||||
|
||||
|
||||
# shape characteristics
|
||||
test_expr('bHMK,bhkn->bhmn', {'b': 2, 'h': 2, 'm': 256, 'k': 256, 'n': 256}, {'H': 1, 'M': 32, 'K': 32})
|
||||
test_expr('bhmk,bHKN->bhmn', {'b': 2, 'h': 2, 'm': 256, 'k': 256, 'n': 256}, {'H': 1, 'K': 32, 'N': 32})
|
||||
test_expr('bhmk,bhkn->bHMN', {'b': 2, 'h': 2, 'm': 256, 'k': 256, 'n': 256}, {'H': 1, 'M': 32, 'N': 32})
|
||||
|
@@ -56,8 +56,8 @@ class _dot(torch.autograd.Function):
|
||||
TYPE c[TM, TN] = acc;
|
||||
|
||||
// epilogue
|
||||
int rxm[TM] = get_program_id(0) * TM + 0 ... TM;
|
||||
int rxn[TN] = get_program_id(1) * TN + 0 ... TN;
|
||||
int rxm[TM] = ridx * TM + 0 ... TM;
|
||||
int rxn[TN] = ridy * TN + 0 ... TN;
|
||||
int offc[TM, TN] = rxm[:, newaxis] * ldc + rxn[newaxis, :];
|
||||
TYPE* pc[TM, TN] = C + offc;
|
||||
bool checkc[TM, TN] = (rxm[:, newaxis] < M) && (rxn[newaxis, :] < N);
|
||||
@@ -95,7 +95,7 @@ class _dot(torch.autograd.Function):
|
||||
if dtype not in _dot.kernel:
|
||||
defines = {
|
||||
'TYPE' : dtype,
|
||||
'STRIDE_AM': '1', 'STRIDE_AK': 'lda',
|
||||
'STRIDE_AM': 'lda', 'STRIDE_AK': '1',
|
||||
'STRIDE_BN': '1', 'STRIDE_BK': 'ldb',
|
||||
'TM' : [64, 128],
|
||||
'TN' : [64, 128],
|
||||
@@ -107,14 +107,12 @@ class _dot(torch.autograd.Function):
|
||||
# allocate output
|
||||
M, K = a.shape
|
||||
K, N = b.shape
|
||||
c = triton.empty([M,N], dtype=dtype)
|
||||
c = torch.empty([M,N], dtype=dtype, device=a.device)
|
||||
# enqueue
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM')),
|
||||
triton.cdiv(N, opt.d('TN'))]
|
||||
time = kernel(a, b, c, 1., M, N, K,
|
||||
a.stride(0), b.stride(0), c.stride(0),
|
||||
grid=grid, bench=100)
|
||||
print(2*M*N*K/(time*1e-6)*1e-9)
|
||||
a.stride(0), b.stride(0), c.stride(0), grid=grid)
|
||||
return c
|
||||
|
||||
|
||||
@@ -126,8 +124,10 @@ M, N, K = 2048, 2048, 2048
|
||||
a = torch.rand((M, K)).cuda()
|
||||
b = torch.rand((K, N)).cuda()
|
||||
|
||||
#a[:] = 1
|
||||
#b[:] = 1
|
||||
|
||||
#zc = torch.matmul(a,b)
|
||||
zc = torch.matmul(a,b)
|
||||
zc_ = dot(a,b)
|
||||
|
||||
#print(torch.allclose(zc, zc_))
|
||||
print(torch.allclose(zc, zc_))
|
||||
|
Reference in New Issue
Block a user