reduced some spilling

This commit is contained in:
Phil Tillet
2023-01-02 19:28:54 -08:00
parent c11fe351e1
commit 05920e0b8b
3 changed files with 152 additions and 148 deletions

View File

@@ -483,7 +483,7 @@ public:
return op->getBlock() == cvt->getBlock() && return op->getBlock() == cvt->getBlock() &&
!(isa<triton::ReduceOp>(op) && !(isa<triton::ReduceOp>(op) &&
!op->getResult(0).getType().isa<RankedTensorType>()) && !op->getResult(0).getType().isa<RankedTensorType>()) &&
!isa<triton::gpu::ConvertLayoutOp>(op) && // !isa<triton::gpu::ConvertLayoutOp>(op) &&
!isa<scf::YieldOp>(op); !isa<scf::YieldOp>(op);
}; };
mlir::getForwardSlice(cvt.getResult(), &cvtSlices, filter); mlir::getForwardSlice(cvt.getResult(), &cvtSlices, filter);

View File

@@ -1,20 +1,20 @@
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1, 8], threadsPerWarp = [4, 8], warpsPerCTA = [8, 1], order = [1, 0]}> #blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [8], order = [0]}>
#blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [2, 16], warpsPerCTA = [8, 1], order = [1, 0]}> #blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 8], threadsPerWarp = [4, 8], warpsPerCTA = [8, 1], order = [1, 0]}>
#mma0 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [8, 1]}> #blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [2, 16], warpsPerCTA = [8, 1], order = [1, 0]}>
#mma1 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 2]}> #blocked3 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [4, 2], order = [0, 1]}>
#mma0 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 2]}>
#mma1 = #triton_gpu.mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [8, 1]}>
#shared0 = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [1, 0]}> #shared0 = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [1, 0]}>
// TODO: swizzle #shared1 = #triton_gpu.shared<{vec = 1, perPhase = 1, maxPhase = 1, order = [0, 1]}>
#shared1 = #triton_gpu.shared<{vec = 2, perPhase = 1, maxPhase = 1, order = [1, 0]}>
module attributes {"triton_gpu.num-warps" = 8 : i32} { module attributes {"triton_gpu.num-warps" = 8 : i32} {
func public @_bwd_kernel_0d1d2d34d5d6d7d8d9d10d11d12d13d14d15c16d17d18d19c20d21d22d23c2425d26d27(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg3: f32, %arg4: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg5: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg6: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg7: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg8: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg9: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg10: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg11: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg12: i32 {tt.divisibility = 16 : i32}, %arg13: i32 {tt.divisibility = 16 : i32}, %arg14: i32 {tt.divisibility = 16 : i32}, %arg15: i32 {tt.divisibility = 16 : i32}, %arg16: i32 {tt.divisibility = 16 : i32}, %arg17: i32 {tt.divisibility = 16 : i32}, %arg18: i32 {tt.divisibility = 16 : i32}, %arg19: i32 {tt.divisibility = 16 : i32}, %arg20: i32 {tt.divisibility = 16 : i32}, %arg21: i32, %arg22: i32 {tt.divisibility = 16 : i32}, %arg23: i32 {tt.divisibility = 16 : i32}, %arg24: i32) { func public @_bwd_kernel_0d1d2d34d5d6d7d8d9d10d11d12d13d14d15c16d17d18d19c20d21d22d23c2425d26d27(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg2: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg3: f32, %arg4: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg5: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg6: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg7: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg8: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg9: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg10: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg11: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg12: i32 {tt.divisibility = 16 : i32}, %arg13: i32 {tt.divisibility = 16 : i32}, %arg14: i32 {tt.divisibility = 16 : i32}, %arg15: i32 {tt.divisibility = 16 : i32}, %arg16: i32 {tt.divisibility = 16 : i32}, %arg17: i32 {tt.divisibility = 16 : i32}, %arg18: i32 {tt.divisibility = 16 : i32}, %arg19: i32 {tt.divisibility = 16 : i32}, %arg20: i32 {tt.divisibility = 16 : i32}, %arg21: i32, %arg22: i32 {tt.divisibility = 16 : i32}, %arg23: i32 {tt.divisibility = 16 : i32}, %arg24: i32) {
%cst = arith.constant dense<0xFF800000> : tensor<128x128xf32, #mma0>
%cst_0 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma0>
%cst_1 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma1>
%c128 = arith.constant 128 : index
%c128_i32 = arith.constant 128 : i32
%c1 = arith.constant 1 : index
%c0 = arith.constant 0 : index %c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c128_i32 = arith.constant 128 : i32
%c128 = arith.constant 128 : index
%cst = arith.constant dense<0xFF800000> : tensor<128x128xf32, #blocked3>
%cst_0 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma0>
%cst_1 = arith.constant dense<0.000000e+00> : tensor<128x128xf32, #mma1>
%0 = tt.get_program_id {axis = 0 : i32} : i32 %0 = tt.get_program_id {axis = 0 : i32} : i32
%1 = arith.divsi %0, %arg22 : i32 %1 = arith.divsi %0, %arg22 : i32
%2 = arith.remsi %0, %arg22 : i32 %2 = arith.remsi %0, %arg22 : i32
@@ -29,134 +29,140 @@ module attributes {"triton_gpu.num-warps" = 8 : i32} {
%11 = tt.addptr %arg7, %5 : !tt.ptr<f16>, i32 %11 = tt.addptr %arg7, %5 : !tt.ptr<f16>, i32
%12 = tt.addptr %arg8, %5 : !tt.ptr<f16>, i32 %12 = tt.addptr %arg8, %5 : !tt.ptr<f16>, i32
%13 = arith.index_cast %arg24 : i32 to index %13 = arith.index_cast %arg24 : i32 to index
%14 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked0}>> %14 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #blocked0>
%15 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %15 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%16 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %16 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>>
%17 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %17 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>
%18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %18 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>
%19 = tt.make_range {end = 128 : i32, start = 0 : i32} : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %19 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked1>
%20 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked0> %20 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked2>
%21 = tt.splat %arg14 : (i32) -> tensor<128x1xi32, #blocked1> %21 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>
%22 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked0}>> %22 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>>
%23 = tt.make_range {end = 64 : i32, start = 0 : i32} : tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>> %23 = tt.expand_dims %21 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>) -> tensor<1x64xi32, #blocked1>
%24 = tt.expand_dims %22 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked0}>>) -> tensor<1x64xi32, #blocked0> %24 = tt.broadcast %23 : (tensor<1x64xi32, #blocked1>) -> tensor<128x64xi32, #blocked1>
%25 = tt.broadcast %24 : (tensor<1x64xi32, #blocked0>) -> tensor<128x64xi32, #blocked0> %25 = tt.expand_dims %22 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked2}>>) -> tensor<1x64xi32, #blocked2>
%26 = tt.expand_dims %23 {axis = 0 : i32} : (tensor<64xi32, #triton_gpu.slice<{dim = 0, parent = #blocked1}>>) -> tensor<1x64xi32, #blocked1> %26 = tt.broadcast %25 : (tensor<1x64xi32, #blocked2>) -> tensor<128x64xi32, #blocked2>
%27 = tt.broadcast %26 : (tensor<1x64xi32, #blocked1>) -> tensor<128x64xi32, #blocked1> %27 = tt.splat %6 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%28 = tt.splat %6 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked0> %28 = tt.splat %arg17 : (i32) -> tensor<128x1xi32, #blocked1>
%29 = tt.splat %arg17 : (i32) -> tensor<128x1xi32, #blocked0> %29 = tt.splat %7 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%30 = tt.splat %7 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked0> %30 = tt.splat %8 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%31 = tt.splat %8 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked0> %31 = tt.splat %9 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%32 = tt.splat %9 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked0> %32 = tt.splat %10 : (!tt.ptr<f32>) -> tensor<128x64x!tt.ptr<f32>, #blocked2>
%33 = tt.splat %10 : (!tt.ptr<f32>) -> tensor<128x64x!tt.ptr<f32>, #blocked1> %33 = arith.muli %0, %arg23 : i32
%34 = arith.muli %arg24, %c128_i32 : i32 %34 = tt.addptr %arg11, %33 : !tt.ptr<f32>, i32
%35 = arith.index_cast %34 : i32 to index %35 = tt.addptr %arg10, %33 : !tt.ptr<f32>, i32
%36 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #mma0> %36 = arith.muli %arg24, %c128_i32 : i32
%37 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #mma0> %37 = arith.index_cast %36 : i32 to index
%38 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #mma0> %38 = tt.splat %35 : (!tt.ptr<f32>) -> tensor<128x!tt.ptr<f32>, #blocked0>
%39 = arith.muli %arg14, %c128_i32 : i32 %39 = tt.splat %arg3 : (f32) -> tensor<128x128xf32, #blocked3>
%40 = tt.splat %39 : (i32) -> tensor<128x64xi32, #blocked0> %40 = tt.splat %34 : (!tt.ptr<f32>) -> tensor<128x!tt.ptr<f32>, #blocked0>
%41 = tt.splat %39 : (i32) -> tensor<128x64xi32, #blocked1> %41 = arith.muli %arg14, %c128_i32 : i32
%42 = tt.splat %12 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked0> %42 = tt.splat %41 : (i32) -> tensor<128x64xi32, #blocked1>
%43 = tt.splat %11 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked0> %43 = tt.splat %41 : (i32) -> tensor<128x64xi32, #blocked2>
%44 = tt.splat %12 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
%45 = tt.splat %11 : (!tt.ptr<f16>) -> tensor<128x64x!tt.ptr<f16>, #blocked1>
scf.for %arg25 = %c0 to %13 step %c1 { scf.for %arg25 = %c0 to %13 step %c1 {
%44 = arith.index_cast %arg25 : index to i32 %46 = arith.index_cast %arg25 : index to i32
%45 = arith.muli %44, %c128_i32 : i32 %47 = arith.muli %46, %c128_i32 : i32
%46 = tt.splat %45 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked0}>> %48 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%47 = tt.splat %45 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %49 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>>
%48 = tt.splat %45 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %50 = tt.splat %47 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>
%49 = tt.splat %45 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>> %51 = arith.addi %48, %15 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%50 = arith.addi %46, %14 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked0}>> %52 = arith.addi %50, %17 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>
%51 = arith.addi %49, %17 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>
%52 = tt.expand_dims %50 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked0}>>) -> tensor<128x1xi32, #blocked0>
%53 = tt.expand_dims %51 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>) -> tensor<128x1xi32, #blocked1> %53 = tt.expand_dims %51 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked1}>>) -> tensor<128x1xi32, #blocked1>
%54 = arith.muli %52, %29 : tensor<128x1xi32, #blocked0> %54 = tt.expand_dims %52 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked2}>>) -> tensor<128x1xi32, #blocked2>
%55 = tt.broadcast %54 : (tensor<128x1xi32, #blocked0>) -> tensor<128x64xi32, #blocked0> %55 = arith.muli %53, %28 : tensor<128x1xi32, #blocked1>
%56 = arith.addi %55, %25 : tensor<128x64xi32, #blocked0> %56 = tt.broadcast %55 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1>
%57 = tt.addptr %30, %56 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %57 = arith.addi %56, %24 : tensor<128x64xi32, #blocked1>
%58 = tt.load %57 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked0> %58 = tt.addptr %29, %57 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%59 = arith.muli %52, %20 : tensor<128x1xi32, #blocked0> %59 = tt.load %58 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1>
%60 = tt.broadcast %59 : (tensor<128x1xi32, #blocked0>) -> tensor<128x64xi32, #blocked0> %60 = arith.muli %53, %19 : tensor<128x1xi32, #blocked1>
%61 = arith.addi %60, %25 : tensor<128x64xi32, #blocked0> %61 = tt.broadcast %60 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1>
%62 = tt.addptr %31, %61 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %62 = arith.addi %61, %24 : tensor<128x64xi32, #blocked1>
%63 = tt.load %62 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked0> %63 = tt.addptr %30, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%64 = arith.index_cast %45 : i32 to index %64 = tt.load %63 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1>
%65 = triton_gpu.convert_layout %58 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #shared0> %65 = arith.index_cast %47 : i32 to index
%66 = tt.trans %65 : (tensor<128x64xf16, #shared0>) -> tensor<64x128xf16, #shared1> %66 = triton_gpu.convert_layout %59 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #shared0>
%67 = arith.addi %47, %15 : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %67 = tt.trans %66 : (tensor<128x64xf16, #shared0>) -> tensor<64x128xf16, #shared1>
%68 = tt.expand_dims %67 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>>) -> tensor<1x128xi32, #mma0> %68 = arith.addi %49, %16 : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>>
%69 = tt.broadcast %68 : (tensor<1x128xi32, #mma0>) -> tensor<128x128xi32, #mma0> %69 = tt.expand_dims %68 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #blocked3}>>) -> tensor<1x128xi32, #blocked3>
%70 = arith.addi %48, %16 : tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>> %70 = tt.broadcast %69 : (tensor<1x128xi32, #blocked3>) -> tensor<128x128xi32, #blocked3>
%71 = tt.expand_dims %70 {axis = 0 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 0, parent = #mma0}>>) -> tensor<1x128xi32, #mma0> %71 = triton_gpu.convert_layout %64 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #shared0>
%72 = tt.broadcast %71 : (tensor<1x128xi32, #mma0>) -> tensor<128x128xi32, #mma0> %72 = tt.trans %71 : (tensor<128x64xf16, #shared0>) -> tensor<64x128xf16, #shared1>
%73 = triton_gpu.convert_layout %63 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #shared0> %73 = arith.muli %54, %20 : tensor<128x1xi32, #blocked2>
%74 = tt.trans %73 : (tensor<128x64xf16, #shared0>) -> tensor<64x128xf16, #shared1> %74 = tt.broadcast %73 : (tensor<128x1xi32, #blocked2>) -> tensor<128x64xi32, #blocked2>
%75 = arith.muli %53, %21 : tensor<128x1xi32, #blocked1> %75 = arith.addi %74, %26 : tensor<128x64xi32, #blocked2>
%76 = tt.broadcast %75 : (tensor<128x1xi32, #blocked1>) -> tensor<128x64xi32, #blocked1> %76 = tt.addptr %32, %75 : tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64xi32, #blocked2>
%77 = arith.addi %76, %27 : tensor<128x64xi32, #blocked1> %77 = tt.addptr %27, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%78 = tt.addptr %33, %77 : tensor<128x64x!tt.ptr<f32>, #blocked1>, tensor<128x64xi32, #blocked1> %78 = tt.addptr %31, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%79 = tt.addptr %28, %61 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %79 = triton_gpu.convert_layout %67 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>>
%80 = tt.addptr %32, %61 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %82:5 = scf.for %arg26 = %65 to %37 step %c128 iter_args(%arg27 = %cst_0, %arg28 = %cst_0, %arg29 = %76, %arg30 = %77, %arg31 = %78) -> (tensor<128x64xf32, #mma0>, tensor<128x64xf32, #mma0>, tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked1>) {
%81:5 = scf.for %arg26 = %64 to %35 step %c128 iter_args(%arg27 = %cst_1, %arg28 = %cst_1, %arg29 = %78, %arg30 = %79, %arg31 = %80) -> (tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr<f32>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64x!tt.ptr<f16>, #blocked0>) { %89 = arith.index_cast %arg26 : index to i32
%88 = arith.index_cast %arg26 : index to i32 %90 = tt.splat %89 : (i32) -> tensor<128xi32, #blocked0>
%89 = tt.splat %88 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %91 = tt.splat %89 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>
%90 = tt.splat %88 : (i32) -> tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %92 = arith.addi %90, %14 : tensor<128xi32, #blocked0>
%91 = tt.load %arg30 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked0> %93 = tt.load %arg30 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1>
%92 = triton_gpu.convert_layout %91 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> %94 = triton_gpu.convert_layout %93 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>>
%93 = triton_gpu.convert_layout %66 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> %95 = tt.dot %94, %79, %cst_1 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x128xf32, #mma1>
%94 = tt.dot %92, %93, %cst_0 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x128xf32, #mma0> %96 = triton_gpu.convert_layout %95 : (tensor<128x128xf32, #mma1>) -> tensor<128x128xf32, #blocked3>
%95 = arith.addi %89, %18 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %97 = arith.addi %91, %18 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>
%96 = tt.expand_dims %95 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>) -> tensor<128x1xi32, #mma0> %98 = tt.expand_dims %97 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>) -> tensor<128x1xi32, #blocked3>
%97 = tt.broadcast %96 : (tensor<128x1xi32, #mma0>) -> tensor<128x128xi32, #mma0> %99 = tt.broadcast %98 : (tensor<128x1xi32, #blocked3>) -> tensor<128x128xi32, #blocked3>
%98 = "triton_gpu.cmpi"(%97, %69) {predicate = 5 : i64} : (tensor<128x128xi32, #mma0>, tensor<128x128xi32, #mma0>) -> tensor<128x128xi1, #mma0> %100 = "triton_gpu.cmpi"(%99, %70) {predicate = 5 : i64} : (tensor<128x128xi32, #blocked3>, tensor<128x128xi32, #blocked3>) -> tensor<128x128xi1, #blocked3>
%99 = "triton_gpu.select"(%98, %94, %cst) : (tensor<128x128xi1, #mma0>, tensor<128x128xf32, #mma0>, tensor<128x128xf32, #mma0>) -> tensor<128x128xf32, #mma0> %101 = "triton_gpu.select"(%100, %96, %cst) : (tensor<128x128xi1, #blocked3>, tensor<128x128xf32, #blocked3>, tensor<128x128xf32, #blocked3>) -> tensor<128x128xf32, #blocked3>
%100 = arith.mulf %99, %36 : tensor<128x128xf32, #mma0> %102 = tt.addptr %38, %92 : tensor<128x!tt.ptr<f32>, #blocked0>, tensor<128xi32, #blocked0>
%101 = math.exp %100 : tensor<128x128xf32, #mma0> %103 = tt.load %102 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128xf32, #blocked0>
%102 = arith.addi %90, %19 : tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>> %104 = arith.mulf %101, %39 : tensor<128x128xf32, #blocked3>
%103 = tt.expand_dims %102 {axis = 1 : i32} : (tensor<128xi32, #triton_gpu.slice<{dim = 1, parent = #mma0}>>) -> tensor<128x1xi32, #mma0> %105 = triton_gpu.convert_layout %103 : (tensor<128xf32, #blocked0>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>
%104 = tt.broadcast %103 : (tensor<128x1xi32, #mma0>) -> tensor<128x128xi32, #mma0> %106 = tt.expand_dims %105 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #blocked3}>>) -> tensor<128x1xf32, #blocked3>
%105 = "triton_gpu.cmpi"(%104, %72) {predicate = 5 : i64} : (tensor<128x128xi32, #mma0>, tensor<128x128xi32, #mma0>) -> tensor<128x128xi1, #mma0> %107 = tt.broadcast %106 : (tensor<128x1xf32, #blocked3>) -> tensor<128x128xf32, #blocked3>
%106 = "triton_gpu.select"(%105, %94, %cst) : (tensor<128x128xi1, #mma0>, tensor<128x128xf32, #mma0>, tensor<128x128xf32, #mma0>) -> tensor<128x128xf32, #mma0> %108 = arith.subf %104, %107 : tensor<128x128xf32, #blocked3>
%107 = arith.mulf %106, %37 : tensor<128x128xf32, #mma0> %109 = math.exp %108 : tensor<128x128xf32, #blocked3>
%108 = math.exp %107 : tensor<128x128xf32, #mma0> %110 = tt.load %arg31 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked1>
%109 = tt.load %arg31 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf16, #blocked0> %111 = arith.truncf %109 : tensor<128x128xf32, #blocked3> to tensor<128x128xf16, #blocked3>
%110 = arith.truncf %101 : tensor<128x128xf32, #mma0> to tensor<128x128xf16, #mma0> %112 = triton_gpu.convert_layout %111 : (tensor<128x128xf16, #blocked3>) -> tensor<128x128xf16, #shared1>
%111 = triton_gpu.convert_layout %110 : (tensor<128x128xf16, #mma0>) -> tensor<128x128xf16, #shared1> %113 = tt.trans %112 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0>
%112 = tt.trans %111 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0> %114 = triton_gpu.convert_layout %113 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>>
%113 = triton_gpu.convert_layout %112 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> %115 = triton_gpu.convert_layout %110 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>>
%114 = triton_gpu.convert_layout %109 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> %116 = tt.dot %114, %115, %arg27 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x64xf32, #mma0>
%115 = tt.dot %113, %114, %arg27 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1> %117 = tt.addptr %40, %92 : tensor<128x!tt.ptr<f32>, #blocked0>, tensor<128xi32, #blocked0>
%116 = triton_gpu.convert_layout %109 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> %118 = tt.load %117 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128xf32, #blocked0>
%117 = triton_gpu.convert_layout %74 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> %119 = triton_gpu.convert_layout %118 : (tensor<128xf32, #blocked0>) -> tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>
%118 = tt.dot %116, %117, %cst_0 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x128xf32, #mma0> %120 = tt.expand_dims %119 {axis = 1 : i32} : (tensor<128xf32, #triton_gpu.slice<{dim = 1, parent = #mma1}>>) -> tensor<128x1xf32, #mma1>
%119 = arith.mulf %108, %118 : tensor<128x128xf32, #mma0> %121 = tt.broadcast %120 : (tensor<128x1xf32, #mma1>) -> tensor<128x128xf32, #mma1>
%120 = arith.mulf %119, %38 : tensor<128x128xf32, #mma0> %122 = arith.subf %cst_1, %121 : tensor<128x128xf32, #mma1>
%121 = arith.truncf %120 : tensor<128x128xf32, #mma0> to tensor<128x128xf16, #mma0> %123 = triton_gpu.convert_layout %110 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>>
%122 = triton_gpu.convert_layout %121 : (tensor<128x128xf16, #mma0>) -> tensor<128x128xf16, #shared1> %80 = triton_gpu.convert_layout %72 : (tensor<64x128xf16, #shared1>) -> tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>>
%123 = tt.trans %122 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0> %124 = tt.dot %123, %80, %122 {allowTF32 = true} : tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<64x128xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x128xf32, #mma1>
%124 = triton_gpu.convert_layout %123 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> %125 = triton_gpu.convert_layout %124 : (tensor<128x128xf32, #mma1>) -> tensor<128x128xf32, #blocked3>
%125 = triton_gpu.convert_layout %91 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> %126 = arith.mulf %109, %125 : tensor<128x128xf32, #blocked3>
%126 = tt.dot %124, %125, %arg28 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1> %127 = arith.mulf %126, %39 : tensor<128x128xf32, #blocked3>
%127 = tt.load %arg29 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf32, #blocked1> %128 = arith.truncf %127 : tensor<128x128xf32, #blocked3> to tensor<128x128xf16, #blocked3>
%128 = triton_gpu.convert_layout %127 : (tensor<128x64xf32, #blocked1>) -> tensor<128x64xf32, #mma1> %129 = triton_gpu.convert_layout %128 : (tensor<128x128xf16, #blocked3>) -> tensor<128x128xf16, #shared1>
%129 = triton_gpu.convert_layout %121 : (tensor<128x128xf16, #mma0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> %130 = tt.trans %129 : (tensor<128x128xf16, #shared1>) -> tensor<128x128xf16, #shared0>
%130 = triton_gpu.convert_layout %58 : (tensor<128x64xf16, #blocked0>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> %131 = triton_gpu.convert_layout %130 : (tensor<128x128xf16, #shared0>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>>
%131 = tt.dot %129, %130, %128 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma1}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma1}>> -> tensor<128x64xf32, #mma1> %132 = triton_gpu.convert_layout %93 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>>
%132 = triton_gpu.convert_layout %131 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked1> %133 = tt.dot %131, %132, %arg28 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x64xf32, #mma0>
tt.store %arg29, %132 : tensor<128x64xf32, #blocked1> %134 = tt.load %arg29 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x64xf32, #blocked2>
%133 = tt.addptr %arg29, %41 : tensor<128x64x!tt.ptr<f32>, #blocked1>, tensor<128x64xi32, #blocked1> %135 = triton_gpu.convert_layout %134 : (tensor<128x64xf32, #blocked2>) -> tensor<128x64xf32, #mma0>
%134 = tt.addptr %arg30, %40 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %136 = triton_gpu.convert_layout %128 : (tensor<128x128xf16, #blocked3>) -> tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>>
%135 = tt.addptr %arg31, %40 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %81 = triton_gpu.convert_layout %59 : (tensor<128x64xf16, #blocked1>) -> tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>>
scf.yield %115, %126, %133, %134, %135 : tensor<128x64xf32, #mma1>, tensor<128x64xf32, #mma1>, tensor<128x64x!tt.ptr<f32>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64x!tt.ptr<f16>, #blocked0> %137 = tt.dot %136, %81, %135 {allowTF32 = true} : tensor<128x128xf16, #triton_gpu.dot_op<{opIdx = 0, parent = #mma0}>> * tensor<128x64xf16, #triton_gpu.dot_op<{opIdx = 1, parent = #mma0}>> -> tensor<128x64xf32, #mma0>
%138 = triton_gpu.convert_layout %137 : (tensor<128x64xf32, #mma0>) -> tensor<128x64xf32, #blocked2>
tt.store %arg29, %138 : tensor<128x64xf32, #blocked2>
%139 = tt.addptr %arg29, %43 : tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64xi32, #blocked2>
%140 = tt.addptr %arg30, %42 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%141 = tt.addptr %arg31, %42 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
scf.yield %116, %133, %139, %140, %141 : tensor<128x64xf32, #mma0>, tensor<128x64xf32, #mma0>, tensor<128x64x!tt.ptr<f32>, #blocked2>, tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64x!tt.ptr<f16>, #blocked1>
} }
%82 = triton_gpu.convert_layout %81#1 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked0> %83 = triton_gpu.convert_layout %82#1 : (tensor<128x64xf32, #mma0>) -> tensor<128x64xf32, #blocked1>
%83 = triton_gpu.convert_layout %81#0 : (tensor<128x64xf32, #mma1>) -> tensor<128x64xf32, #blocked0> %84 = triton_gpu.convert_layout %82#0 : (tensor<128x64xf32, #mma0>) -> tensor<128x64xf32, #blocked1>
%84 = tt.addptr %42, %61 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %85 = tt.addptr %44, %62 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%85 = arith.truncf %83 : tensor<128x64xf32, #blocked0> to tensor<128x64xf16, #blocked0> %86 = arith.truncf %84 : tensor<128x64xf32, #blocked1> to tensor<128x64xf16, #blocked1>
tt.store %84, %85 : tensor<128x64xf16, #blocked0> tt.store %85, %86 : tensor<128x64xf16, #blocked1>
%86 = tt.addptr %43, %56 : tensor<128x64x!tt.ptr<f16>, #blocked0>, tensor<128x64xi32, #blocked0> %87 = tt.addptr %45, %57 : tensor<128x64x!tt.ptr<f16>, #blocked1>, tensor<128x64xi32, #blocked1>
%87 = arith.truncf %82 : tensor<128x64xf32, #blocked0> to tensor<128x64xf16, #blocked0> %88 = arith.truncf %83 : tensor<128x64xf32, #blocked1> to tensor<128x64xf16, #blocked1>
tt.store %86, %87 : tensor<128x64xf16, #blocked0> tt.store %87, %88 : tensor<128x64xf16, #blocked1>
} }
return return
} }

View File

@@ -164,16 +164,14 @@ def _bwd_kernel(
# NOTE: `do` is pre-divided by `l`; no normalization here # NOTE: `do` is pre-divided by `l`; no normalization here
qk = tl.dot(q, tl.trans(k)) qk = tl.dot(q, tl.trans(k))
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
# m = tl.load(m_ptrs + offs_m_curr) m = tl.load(m_ptrs + offs_m_curr)
# p = tl.exp(qk * sm_scale - m[:, None]) p = tl.exp(qk * sm_scale - m[:, None])
p = tl.exp(qk * sm_scale)
# compute dv # compute dv
do = tl.load(do_ptrs) do = tl.load(do_ptrs)
dv += tl.dot(tl.trans(p.to(tl.float16)), do) dv += tl.dot(tl.trans(p.to(tl.float16)), do)
# compute dp = dot(v, do) # compute dp = dot(v, do)
# Di = tl.load(D_ptrs + offs_m_curr) Di = tl.load(D_ptrs + offs_m_curr)
# dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
dp += tl.dot(do, tl.trans(v)) dp += tl.dot(do, tl.trans(v))
# compute ds = p * (dp - delta[:, None]) # compute ds = p * (dp - delta[:, None])
ds = p * dp * sm_scale ds = p * dp * sm_scale
@@ -287,7 +285,7 @@ class _attention(torch.autograd.Function):
# num_stages=1, # num_stages=1,
# ) # )
# print(pgm.asm["ttgir"]) # print(pgm.asm["ttgir"])
# exit(1) # # exit(1)
return dq, dk, dv, None return dq, dk, dv, None
@@ -326,8 +324,8 @@ def test_op(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
# compare # compare
triton.testing.assert_almost_equal(ref_out, tri_out) triton.testing.assert_almost_equal(ref_out, tri_out)
triton.testing.assert_almost_equal(ref_dv, tri_dv) triton.testing.assert_almost_equal(ref_dv, tri_dv)
# triton.testing.assert_almost_equal(ref_dk, tri_dk) triton.testing.assert_almost_equal(ref_dk, tri_dk)
# triton.testing.assert_almost_equal(ref_dq, tri_dq) triton.testing.assert_almost_equal(ref_dq, tri_dq)
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64 BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64
# vary seq length for fixed head and batch=4 # vary seq length for fixed head and batch=4