Python: Upgraded boost to 1.58

This commit is contained in:
Philippe Tillet
2015-08-06 23:47:51 -07:00
parent bf866978ad
commit 080bbea9b9
2821 changed files with 12373 additions and 384959 deletions

View File

@@ -1,13 +0,0 @@
<!-- Copyright (c) 2002-2003 William E. Kempf.
Subject to the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
-->
<html>
<head>
<meta http-equiv="refresh" content="0; URL=doc/index.html">
</head>
<body>
Automatic redirection failed, please go to <a href="doc/index.html">doc/index.html</a>
</body>
</html>

View File

@@ -1,63 +0,0 @@
// (C) Copyright 2012 Vicente J. Botet Escriba
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#ifndef BOOST_NO_EXCEPTIONS
#include <boost/thread/future_error_code.hpp>
namespace boost
{
namespace thread_detail
{
class future_error_category :
public boost::system::error_category
{
public:
virtual const char* name() const BOOST_NOEXCEPT;
virtual std::string message(int ev) const;
};
const char*
future_error_category::name() const BOOST_NOEXCEPT
{
return "future";
}
std::string
future_error_category::message(int ev) const
{
switch (BOOST_SCOPED_ENUM_NATIVE(future_errc)(ev))
{
case future_errc::broken_promise:
return std::string("The associated promise has been destructed prior "
"to the associated state becoming ready.");
case future_errc::future_already_retrieved:
return std::string("The future has already been retrieved from "
"the promise or packaged_task.");
case future_errc::promise_already_satisfied:
return std::string("The state of the promise has already been set.");
case future_errc::no_state:
return std::string("Operation not permitted on an object without "
"an associated state.");
}
return std::string("unspecified future_errc value\n");
}
future_error_category future_error_category_var;
}
BOOST_THREAD_DECL
const system::error_category&
future_category() BOOST_NOEXCEPT
{
return thread_detail::future_error_category_var;
}
}
#endif

View File

@@ -1,78 +0,0 @@
// Copyright (C) 2007 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#ifdef BOOST_THREAD_ONCE_ATOMIC
#include "./once_atomic.cpp"
#else
#define __STDC_CONSTANT_MACROS
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#include <boost/thread/once.hpp>
#include <boost/assert.hpp>
#include <pthread.h>
#include <stdlib.h>
#include <memory>
namespace boost
{
namespace thread_detail
{
BOOST_THREAD_DECL uintmax_atomic_t once_global_epoch=BOOST_THREAD_DETAIL_UINTMAX_ATOMIC_MAX_C;
BOOST_THREAD_DECL pthread_mutex_t once_epoch_mutex=PTHREAD_MUTEX_INITIALIZER;
BOOST_THREAD_DECL pthread_cond_t once_epoch_cv = PTHREAD_COND_INITIALIZER;
namespace
{
pthread_key_t epoch_tss_key;
pthread_once_t epoch_tss_key_flag=PTHREAD_ONCE_INIT;
extern "C"
{
static void delete_epoch_tss_data(void* data)
{
free(data);
}
static void create_epoch_tss_key()
{
BOOST_VERIFY(!pthread_key_create(&epoch_tss_key,delete_epoch_tss_data));
}
}
#if defined BOOST_THREAD_PATCH
const pthread_once_t pthread_once_init_value=PTHREAD_ONCE_INIT;
struct BOOST_THREAD_DECL delete_epoch_tss_key_on_dlclose_t
{
delete_epoch_tss_key_on_dlclose_t()
{
}
~delete_epoch_tss_key_on_dlclose_t()
{
if(memcmp(&epoch_tss_key_flag, &pthread_once_init_value, sizeof(pthread_once_t)))
{
pthread_key_delete(epoch_tss_key);
}
}
};
delete_epoch_tss_key_on_dlclose_t delete_epoch_tss_key_on_dlclose;
#endif
}
uintmax_atomic_t& get_once_per_thread_epoch()
{
BOOST_VERIFY(!pthread_once(&epoch_tss_key_flag,create_epoch_tss_key));
void* data=pthread_getspecific(epoch_tss_key);
if(!data)
{
data=malloc(sizeof(thread_detail::uintmax_atomic_t));
BOOST_VERIFY(!pthread_setspecific(epoch_tss_key,data));
*static_cast<thread_detail::uintmax_atomic_t*>(data)=BOOST_THREAD_DETAIL_UINTMAX_ATOMIC_MAX_C;
}
return *static_cast<thread_detail::uintmax_atomic_t*>(data);
}
}
}
#endif //

View File

@@ -1,90 +0,0 @@
// (C) Copyright 2013 Andrey Semashev
// (C) Copyright 2013 Vicente J. Botet Escriba
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//#define __STDC_CONSTANT_MACROS
#include <boost/thread/detail/config.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/pthread/pthread_mutex_scoped_lock.hpp>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/atomic.hpp>
#include <boost/memory_order.hpp>
#include <pthread.h>
namespace boost
{
namespace thread_detail
{
enum flag_states
{
uninitialized, in_progress, initialized
};
#ifndef BOOST_THREAD_PROVIDES_ONCE_CXX11
BOOST_STATIC_ASSERT_MSG(sizeof(atomic_int_type) == sizeof(atomic_type), "Boost.Thread: unsupported platform");
#endif
static pthread_mutex_t once_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t once_cv = PTHREAD_COND_INITIALIZER;
BOOST_THREAD_DECL bool enter_once_region(once_flag& flag) BOOST_NOEXCEPT
{
atomic_type& f = get_atomic_storage(flag);
if (f.load(memory_order_acquire) != initialized)
{
pthread::pthread_mutex_scoped_lock lk(&once_mutex);
if (f.load(memory_order_acquire) != initialized)
{
while (true)
{
atomic_int_type expected = uninitialized;
if (f.compare_exchange_strong(expected, in_progress, memory_order_acq_rel, memory_order_acquire))
{
// We have set the flag to in_progress
return true;
}
else if (expected == initialized)
{
// Another thread managed to complete the initialization
return false;
}
else
{
// Wait until the initialization is complete
//pthread::pthread_mutex_scoped_lock lk(&once_mutex);
BOOST_VERIFY(!pthread_cond_wait(&once_cv, &once_mutex));
}
}
}
}
return false;
}
BOOST_THREAD_DECL void commit_once_region(once_flag& flag) BOOST_NOEXCEPT
{
atomic_type& f = get_atomic_storage(flag);
{
pthread::pthread_mutex_scoped_lock lk(&once_mutex);
f.store(initialized, memory_order_release);
}
BOOST_VERIFY(!pthread_cond_broadcast(&once_cv));
}
BOOST_THREAD_DECL void rollback_once_region(once_flag& flag) BOOST_NOEXCEPT
{
atomic_type& f = get_atomic_storage(flag);
{
pthread::pthread_mutex_scoped_lock lk(&once_mutex);
f.store(uninitialized, memory_order_release);
}
BOOST_VERIFY(!pthread_cond_broadcast(&once_cv));
}
} // namespace thread_detail
} // namespace boost

View File

@@ -1,767 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2007-8 Anthony Williams
// (C) Copyright 2011-2012 Vicente J. Botet Escriba
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#include <boost/thread/thread_only.hpp>
#if defined BOOST_THREAD_USES_DATETIME
#include <boost/thread/xtime.hpp>
#endif
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/locks.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/future.hpp>
#ifdef __GLIBC__
#include <sys/sysinfo.h>
#elif defined(__APPLE__) || defined(__FreeBSD__)
#include <sys/types.h>
#include <sys/sysctl.h>
#elif defined BOOST_HAS_UNISTD_H
#include <unistd.h>
#endif
#include "./timeconv.inl"
namespace boost
{
namespace detail
{
thread_data_base::~thread_data_base()
{
for (notify_list_t::iterator i = notify.begin(), e = notify.end();
i != e; ++i)
{
i->second->unlock();
i->first->notify_all();
}
for (async_states_t::iterator i = async_states_.begin(), e = async_states_.end();
i != e; ++i)
{
(*i)->make_ready();
}
}
struct thread_exit_callback_node
{
boost::detail::thread_exit_function_base* func;
thread_exit_callback_node* next;
thread_exit_callback_node(boost::detail::thread_exit_function_base* func_,
thread_exit_callback_node* next_):
func(func_),next(next_)
{}
};
namespace
{
#ifdef BOOST_THREAD_PROVIDES_ONCE_CXX11
boost::once_flag current_thread_tls_init_flag;
#else
boost::once_flag current_thread_tls_init_flag=BOOST_ONCE_INIT;
#endif
pthread_key_t current_thread_tls_key;
extern "C"
{
static void tls_destructor(void* data)
{
boost::detail::thread_data_base* thread_info=static_cast<boost::detail::thread_data_base*>(data);
if(thread_info)
{
while(!thread_info->tss_data.empty() || thread_info->thread_exit_callbacks)
{
while(thread_info->thread_exit_callbacks)
{
detail::thread_exit_callback_node* const current_node=thread_info->thread_exit_callbacks;
thread_info->thread_exit_callbacks=current_node->next;
if(current_node->func)
{
(*current_node->func)();
delete current_node->func;
}
delete current_node;
}
for(std::map<void const*,tss_data_node>::iterator next=thread_info->tss_data.begin(),
current,
end=thread_info->tss_data.end();
next!=end;)
{
current=next;
++next;
if(current->second.func && (current->second.value!=0))
{
(*current->second.func)(current->second.value);
}
thread_info->tss_data.erase(current);
}
}
if (thread_info) // fixme: should we test this?
{
thread_info->self.reset();
}
}
}
}
#if defined BOOST_THREAD_PATCH
struct delete_current_thread_tls_key_on_dlclose_t
{
delete_current_thread_tls_key_on_dlclose_t()
{
}
~delete_current_thread_tls_key_on_dlclose_t()
{
if (current_thread_tls_init_flag.epoch!=BOOST_ONCE_INITIAL_FLAG_VALUE)
{
pthread_key_delete(current_thread_tls_key);
}
}
};
delete_current_thread_tls_key_on_dlclose_t delete_current_thread_tls_key_on_dlclose;
#endif
void create_current_thread_tls_key()
{
BOOST_VERIFY(!pthread_key_create(&current_thread_tls_key,&tls_destructor));
}
}
boost::detail::thread_data_base* get_current_thread_data()
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
return (boost::detail::thread_data_base*)pthread_getspecific(current_thread_tls_key);
}
void set_current_thread_data(detail::thread_data_base* new_data)
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
BOOST_VERIFY(!pthread_setspecific(current_thread_tls_key,new_data));
}
}
namespace
{
extern "C"
{
static void* thread_proxy(void* param)
{
boost::detail::thread_data_ptr thread_info = static_cast<boost::detail::thread_data_base*>(param)->self;
thread_info->self.reset();
detail::set_current_thread_data(thread_info.get());
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
BOOST_TRY
{
#endif
thread_info->run();
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
}
BOOST_CATCH (thread_interrupted const&)
{
}
// Removed as it stops the debugger identifying the cause of the exception
// Unhandled exceptions still cause the application to terminate
// BOOST_CATCH(...)
// {
// throw;
//
// std::terminate();
// }
BOOST_CATCH_END
#endif
detail::tls_destructor(thread_info.get());
detail::set_current_thread_data(0);
boost::lock_guard<boost::mutex> lock(thread_info->data_mutex);
thread_info->done=true;
thread_info->done_condition.notify_all();
return 0;
}
}
}
namespace detail
{
struct externally_launched_thread:
detail::thread_data_base
{
externally_launched_thread()
{
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
interrupt_enabled=false;
#endif
}
~externally_launched_thread() {
BOOST_ASSERT(notify.empty());
notify.clear();
BOOST_ASSERT(async_states_.empty());
async_states_.clear();
}
void run()
{}
void notify_all_at_thread_exit(condition_variable*, mutex*)
{}
private:
externally_launched_thread(externally_launched_thread&);
void operator=(externally_launched_thread&);
};
thread_data_base* make_external_thread_data()
{
thread_data_base* const me(new externally_launched_thread());
me->self.reset(me);
set_current_thread_data(me);
return me;
}
thread_data_base* get_or_make_current_thread_data()
{
thread_data_base* current_thread_data(get_current_thread_data());
if(!current_thread_data)
{
current_thread_data=make_external_thread_data();
}
return current_thread_data;
}
}
thread::thread() BOOST_NOEXCEPT
{}
bool thread::start_thread_noexcept()
{
thread_info->self=thread_info;
int const res = pthread_create(&thread_info->thread_handle, 0, &thread_proxy, thread_info.get());
if (res != 0)
{
thread_info->self.reset();
return false;
// boost::throw_exception(thread_resource_error(res, "boost thread: failed in pthread_create"));
}
return true;
}
bool thread::start_thread_noexcept(const attributes& attr)
{
thread_info->self=thread_info;
const attributes::native_handle_type* h = attr.native_handle();
int res = pthread_create(&thread_info->thread_handle, h, &thread_proxy, thread_info.get());
if (res != 0)
{
thread_info->self.reset();
return false;
// boost::throw_exception(thread_resource_error(res, "boost thread: failed in pthread_create"));
}
int detached_state;
res = pthread_attr_getdetachstate(h, &detached_state);
if (res != 0)
{
thread_info->self.reset();
return false;
// boost::throw_exception(thread_resource_error(res, "boost thread: failed in pthread_attr_getdetachstate"));
}
if (PTHREAD_CREATE_DETACHED==detached_state)
{
detail::thread_data_ptr local_thread_info;
thread_info.swap(local_thread_info);
if(local_thread_info)
{
//lock_guard<mutex> lock(local_thread_info->data_mutex);
if(!local_thread_info->join_started)
{
//BOOST_VERIFY(!pthread_detach(local_thread_info->thread_handle));
local_thread_info->join_started=true;
local_thread_info->joined=true;
}
}
}
return true;
}
detail::thread_data_ptr thread::get_thread_info BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
return thread_info;
}
bool thread::join_noexcept()
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
bool do_join=false;
{
unique_lock<mutex> lock(local_thread_info->data_mutex);
while(!local_thread_info->done)
{
local_thread_info->done_condition.wait(lock);
}
do_join=!local_thread_info->join_started;
if(do_join)
{
local_thread_info->join_started=true;
}
else
{
while(!local_thread_info->joined)
{
local_thread_info->done_condition.wait(lock);
}
}
}
if(do_join)
{
void* result=0;
BOOST_VERIFY(!pthread_join(local_thread_info->thread_handle,&result));
lock_guard<mutex> lock(local_thread_info->data_mutex);
local_thread_info->joined=true;
local_thread_info->done_condition.notify_all();
}
if(thread_info==local_thread_info)
{
thread_info.reset();
}
return true;
}
else
{
return false;
}
}
bool thread::do_try_join_until_noexcept(struct timespec const &timeout, bool& res)
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
bool do_join=false;
{
unique_lock<mutex> lock(local_thread_info->data_mutex);
while(!local_thread_info->done)
{
if(!local_thread_info->done_condition.do_wait_until(lock,timeout))
{
res=false;
return true;
}
}
do_join=!local_thread_info->join_started;
if(do_join)
{
local_thread_info->join_started=true;
}
else
{
while(!local_thread_info->joined)
{
local_thread_info->done_condition.wait(lock);
}
}
}
if(do_join)
{
void* result=0;
BOOST_VERIFY(!pthread_join(local_thread_info->thread_handle,&result));
lock_guard<mutex> lock(local_thread_info->data_mutex);
local_thread_info->joined=true;
local_thread_info->done_condition.notify_all();
}
if(thread_info==local_thread_info)
{
thread_info.reset();
}
res=true;
return true;
}
else
{
return false;
}
}
bool thread::joinable() const BOOST_NOEXCEPT
{
return (get_thread_info)()?true:false;
}
void thread::detach()
{
detail::thread_data_ptr local_thread_info;
thread_info.swap(local_thread_info);
if(local_thread_info)
{
lock_guard<mutex> lock(local_thread_info->data_mutex);
if(!local_thread_info->join_started)
{
BOOST_VERIFY(!pthread_detach(local_thread_info->thread_handle));
local_thread_info->join_started=true;
local_thread_info->joined=true;
}
}
}
namespace this_thread
{
namespace hiden
{
void BOOST_THREAD_DECL sleep_for(const timespec& ts)
{
boost::detail::thread_data_base* const thread_info=boost::detail::get_current_thread_data();
if(thread_info)
{
unique_lock<mutex> lk(thread_info->sleep_mutex);
while( thread_info->sleep_condition.do_wait_for(lk,ts)) {}
}
else
{
if (boost::detail::timespec_ge(ts, boost::detail::timespec_zero()))
{
# if defined(BOOST_HAS_PTHREAD_DELAY_NP)
# if defined(__IBMCPP__)
BOOST_VERIFY(!pthread_delay_np(const_cast<timespec*>(&ts)));
# else
BOOST_VERIFY(!pthread_delay_np(&ts));
# endif
# elif defined(BOOST_HAS_NANOSLEEP)
// nanosleep takes a timespec that is an offset, not
// an absolute time.
nanosleep(&ts, 0);
# else
mutex mx;
unique_lock<mutex> lock(mx);
condition_variable cond;
cond.do_wait_for(lock, ts);
# endif
}
}
}
void BOOST_THREAD_DECL sleep_until(const timespec& ts)
{
boost::detail::thread_data_base* const thread_info=boost::detail::get_current_thread_data();
if(thread_info)
{
unique_lock<mutex> lk(thread_info->sleep_mutex);
while(thread_info->sleep_condition.do_wait_until(lk,ts)) {}
}
else
{
timespec now = boost::detail::timespec_now();
if (boost::detail::timespec_gt(ts, now))
{
for (int foo=0; foo < 5; ++foo)
{
# if defined(BOOST_HAS_PTHREAD_DELAY_NP)
timespec d = boost::detail::timespec_minus(ts, now);
BOOST_VERIFY(!pthread_delay_np(&d));
# elif defined(BOOST_HAS_NANOSLEEP)
// nanosleep takes a timespec that is an offset, not
// an absolute time.
timespec d = boost::detail::timespec_minus(ts, now);
nanosleep(&d, 0);
# else
mutex mx;
unique_lock<mutex> lock(mx);
condition_variable cond;
cond.do_wait_until(lock, ts);
# endif
timespec now2 = boost::detail::timespec_now();
if (boost::detail::timespec_ge(now2, ts))
{
return;
}
}
}
}
}
} // hiden
} // this_thread
namespace this_thread
{
void yield() BOOST_NOEXCEPT
{
# if defined(BOOST_HAS_SCHED_YIELD)
BOOST_VERIFY(!sched_yield());
# elif defined(BOOST_HAS_PTHREAD_YIELD)
BOOST_VERIFY(!pthread_yield());
//# elif defined BOOST_THREAD_USES_DATETIME
// xtime xt;
// xtime_get(&xt, TIME_UTC_);
// sleep(xt);
// sleep_for(chrono::milliseconds(0));
# else
#error
timespec ts;
ts.tv_sec= 0;
ts.tv_nsec= 0;
hiden::sleep_for(ts);
# endif
}
}
unsigned thread::hardware_concurrency() BOOST_NOEXCEPT
{
#if defined(PTW32_VERSION) || defined(__hpux)
return pthread_num_processors_np();
#elif defined(__APPLE__) || defined(__FreeBSD__)
int count;
size_t size=sizeof(count);
return sysctlbyname("hw.ncpu",&count,&size,NULL,0)?0:count;
#elif defined(BOOST_HAS_UNISTD_H) && defined(_SC_NPROCESSORS_ONLN)
int const count=sysconf(_SC_NPROCESSORS_ONLN);
return (count>0)?count:0;
#elif defined(__GLIBC__)
return get_nprocs();
#else
return 0;
#endif
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void thread::interrupt()
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
local_thread_info->interrupt_requested=true;
if(local_thread_info->current_cond)
{
boost::pthread::pthread_mutex_scoped_lock internal_lock(local_thread_info->cond_mutex);
BOOST_VERIFY(!pthread_cond_broadcast(local_thread_info->current_cond));
}
}
}
bool thread::interruption_requested() const BOOST_NOEXCEPT
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
return local_thread_info->interrupt_requested;
}
else
{
return false;
}
}
#endif
thread::native_handle_type thread::native_handle()
{
detail::thread_data_ptr const local_thread_info=(get_thread_info)();
if(local_thread_info)
{
lock_guard<mutex> lk(local_thread_info->data_mutex);
return local_thread_info->thread_handle;
}
else
{
return pthread_t();
}
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
namespace this_thread
{
void interruption_point()
{
#ifndef BOOST_NO_EXCEPTIONS
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(thread_info && thread_info->interrupt_enabled)
{
lock_guard<mutex> lg(thread_info->data_mutex);
if(thread_info->interrupt_requested)
{
thread_info->interrupt_requested=false;
throw thread_interrupted();
}
}
#endif
}
bool interruption_enabled() BOOST_NOEXCEPT
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
return thread_info && thread_info->interrupt_enabled;
}
bool interruption_requested() BOOST_NOEXCEPT
{
boost::detail::thread_data_base* const thread_info=detail::get_current_thread_data();
if(!thread_info)
{
return false;
}
else
{
lock_guard<mutex> lg(thread_info->data_mutex);
return thread_info->interrupt_requested;
}
}
disable_interruption::disable_interruption() BOOST_NOEXCEPT:
interruption_was_enabled(interruption_enabled())
{
if(interruption_was_enabled)
{
detail::get_current_thread_data()->interrupt_enabled=false;
}
}
disable_interruption::~disable_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interrupt_enabled=interruption_was_enabled;
}
}
restore_interruption::restore_interruption(disable_interruption& d) BOOST_NOEXCEPT
{
if(d.interruption_was_enabled)
{
detail::get_current_thread_data()->interrupt_enabled=true;
}
}
restore_interruption::~restore_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interrupt_enabled=false;
}
}
}
#endif
namespace detail
{
void add_thread_exit_function(thread_exit_function_base* func)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
thread_exit_callback_node* const new_node=
new thread_exit_callback_node(func,current_thread_data->thread_exit_callbacks);
current_thread_data->thread_exit_callbacks=new_node;
}
tss_data_node* find_tss_data(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
std::map<void const*,tss_data_node>::iterator current_node=
current_thread_data->tss_data.find(key);
if(current_node!=current_thread_data->tss_data.end())
{
return &current_node->second;
}
}
return 0;
}
void* get_tss_data(void const* key)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
return current_node->value;
}
return 0;
}
void add_new_tss_node(void const* key,
boost::shared_ptr<tss_cleanup_function> func,
void* tss_data)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
current_thread_data->tss_data.insert(std::make_pair(key,tss_data_node(func,tss_data)));
}
void erase_tss_node(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
current_thread_data->tss_data.erase(key);
}
}
void set_tss_data(void const* key,
boost::shared_ptr<tss_cleanup_function> func,
void* tss_data,bool cleanup_existing)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
if(cleanup_existing && current_node->func && (current_node->value!=0))
{
(*current_node->func)(current_node->value);
}
if(func || (tss_data!=0))
{
current_node->func=func;
current_node->value=tss_data;
}
else
{
erase_tss_node(key);
}
}
else if(func || (tss_data!=0))
{
add_new_tss_node(key,func,tss_data);
}
}
}
BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk)
{
detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
if(current_thread_data)
{
current_thread_data->notify_all_at_thread_exit(&cond, lk.release());
}
}
namespace detail {
void BOOST_THREAD_DECL make_ready_at_thread_exit(shared_ptr<shared_state_base> as)
{
detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
if(current_thread_data)
{
current_thread_data->make_ready_at_thread_exit(as);
}
}
}
}

View File

@@ -1,151 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
// Copyright (C) 2009 Anthony Williams
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// boostinspect:nounnamed
#include <boost/assert.hpp>
namespace {
const int MILLISECONDS_PER_SECOND = 1000;
const int NANOSECONDS_PER_SECOND = 1000000000;
const int NANOSECONDS_PER_MILLISECOND = 1000000;
const int MICROSECONDS_PER_SECOND = 1000000;
const int NANOSECONDS_PER_MICROSECOND = 1000;
#if defined BOOST_THREAD_USES_DATETIME
inline void to_time(int milliseconds, boost::xtime& xt)
{
int res = 0;
res = boost::xtime_get(&xt, boost::TIME_UTC_);
BOOST_ASSERT(res == boost::TIME_UTC_); (void)res;
xt.sec += (milliseconds / MILLISECONDS_PER_SECOND);
xt.nsec += ((milliseconds % MILLISECONDS_PER_SECOND) *
NANOSECONDS_PER_MILLISECOND);
if (xt.nsec >= NANOSECONDS_PER_SECOND)
{
++xt.sec;
xt.nsec -= NANOSECONDS_PER_SECOND;
}
}
#endif
#if defined(BOOST_HAS_PTHREADS)
#if defined BOOST_THREAD_USES_DATETIME
inline void to_timespec(const boost::xtime& xt, timespec& ts)
{
ts.tv_sec = static_cast<int>(xt.sec);
ts.tv_nsec = static_cast<int>(xt.nsec);
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
#endif
inline void to_time(int milliseconds, timespec& ts)
{
#if defined BOOST_THREAD_USES_DATETIME
boost::xtime xt;
to_time(milliseconds, xt);
to_timespec(xt, ts);
#else
ts.tv_sec += (milliseconds / MILLISECONDS_PER_SECOND);
ts.tv_nsec += ((milliseconds % MILLISECONDS_PER_SECOND) *
NANOSECONDS_PER_MILLISECOND);
if (ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
++ts.tv_sec;
ts.tv_nsec -= NANOSECONDS_PER_SECOND;
}
#endif
}
#if defined BOOST_THREAD_USES_DATETIME
inline void to_timespec_duration(const boost::xtime& xt, timespec& ts)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC_);
BOOST_ASSERT(res == boost::TIME_UTC_); (void)res;
if (boost::xtime_cmp(xt, cur) <= 0)
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
else
{
ts.tv_sec = xt.sec - cur.sec;
ts.tv_nsec = xt.nsec - cur.nsec;
if( ts.tv_nsec < 0 )
{
ts.tv_sec -= 1;
ts.tv_nsec += NANOSECONDS_PER_SECOND;
}
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
}
#endif
#endif
#if defined BOOST_THREAD_USES_DATETIME
inline void to_duration(boost::xtime xt, int& milliseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC_);
BOOST_ASSERT(res == boost::TIME_UTC_); (void)res;
if (boost::xtime_cmp(xt, cur) <= 0)
milliseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
milliseconds = (int)((xt.sec - cur.sec) * MILLISECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MILLISECOND/2)) /
NANOSECONDS_PER_MILLISECOND);
}
}
inline void to_microduration(boost::xtime xt, int& microseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC_);
BOOST_ASSERT(res == boost::TIME_UTC_); (void)res;
if (boost::xtime_cmp(xt, cur) <= 0)
microseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
microseconds = (int)((xt.sec - cur.sec) * MICROSECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MICROSECOND/2)) /
NANOSECONDS_PER_MICROSECOND);
}
}
#endif
}
// Change Log:
// 1 Jun 01 Initial creation.

View File

@@ -1,38 +0,0 @@
// (C) Copyright Michael Glassford 2004.
// (C) Copyright 2007 Anthony Williams
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_HAS_WINTHREADS) && (defined(BOOST_THREAD_BUILD_LIB) || defined(BOOST_THREAD_TEST) || defined(UNDER_CE)) && (!defined(_MSC_VER) || defined(UNDER_CE))
namespace boost
{
/*
This file is a "null" implementation of tss cleanup; it's
purpose is to to eliminate link errors in cases
where it is known that tss cleanup is not needed.
*/
void tss_cleanup_implemented(void)
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
}
#endif //defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_LIB) && !defined(_MSC_VER)

View File

@@ -1,769 +0,0 @@
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// (C) Copyright 2007 Anthony Williams
// (C) Copyright 2007 David Deakins
// (C) Copyright 2011-2013 Vicente J. Botet Escriba
#ifndef _WIN32_WINNT
#define _WIN32_WINNT 0x400
#endif
#ifndef WINVER
#define WINVER 0x400
#endif
//#define BOOST_THREAD_VERSION 3
#include <boost/thread/thread_only.hpp>
#include <boost/thread/once.hpp>
#include <boost/thread/tss.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/detail/tss_hooks.hpp>
#include <boost/thread/future.hpp>
#include <boost/assert.hpp>
#include <boost/cstdint.hpp>
#if defined BOOST_THREAD_USES_DATETIME
#include <boost/date_time/posix_time/conversion.hpp>
#endif
#include <memory>
#include <algorithm>
#ifndef UNDER_CE
#include <process.h>
#endif
#include <stdio.h>
#include <windows.h>
namespace boost
{
namespace detail
{
thread_data_base::~thread_data_base()
{
for (notify_list_t::iterator i = notify.begin(), e = notify.end();
i != e; ++i)
{
i->second->unlock();
i->first->notify_all();
}
for (async_states_t::iterator i = async_states_.begin(), e = async_states_.end();
i != e; ++i)
{
(*i)->make_ready();
}
}
}
namespace
{
#ifdef BOOST_THREAD_PROVIDES_ONCE_CXX11
boost::once_flag current_thread_tls_init_flag;
#else
boost::once_flag current_thread_tls_init_flag=BOOST_ONCE_INIT;
#endif
#if defined(UNDER_CE)
// Windows CE does not define the TLS_OUT_OF_INDEXES constant.
#define TLS_OUT_OF_INDEXES 0xFFFFFFFF
#endif
DWORD current_thread_tls_key=TLS_OUT_OF_INDEXES;
void create_current_thread_tls_key()
{
tss_cleanup_implemented(); // if anyone uses TSS, we need the cleanup linked in
current_thread_tls_key=TlsAlloc();
BOOST_ASSERT(current_thread_tls_key!=TLS_OUT_OF_INDEXES);
}
void cleanup_tls_key()
{
if(current_thread_tls_key!=TLS_OUT_OF_INDEXES)
{
TlsFree(current_thread_tls_key);
current_thread_tls_key=TLS_OUT_OF_INDEXES;
}
}
void set_current_thread_data(detail::thread_data_base* new_data)
{
boost::call_once(current_thread_tls_init_flag,create_current_thread_tls_key);
if (current_thread_tls_key!=TLS_OUT_OF_INDEXES)
{
BOOST_VERIFY(TlsSetValue(current_thread_tls_key,new_data));
}
else
{
BOOST_VERIFY(false);
//boost::throw_exception(thread_resource_error());
}
}
}
namespace detail
{
thread_data_base* get_current_thread_data()
{
if(current_thread_tls_key==TLS_OUT_OF_INDEXES)
{
return 0;
}
return (detail::thread_data_base*)TlsGetValue(current_thread_tls_key);
}
}
namespace
{
#ifndef BOOST_HAS_THREADEX
// Windows CE doesn't define _beginthreadex
struct ThreadProxyData
{
typedef unsigned (__stdcall* func)(void*);
func start_address_;
void* arglist_;
ThreadProxyData(func start_address,void* arglist) : start_address_(start_address), arglist_(arglist) {}
};
DWORD WINAPI ThreadProxy(LPVOID args)
{
std::auto_ptr<ThreadProxyData> data(reinterpret_cast<ThreadProxyData*>(args));
DWORD ret=data->start_address_(data->arglist_);
return ret;
}
//typedef void* uintptr_t;
inline uintptr_t _beginthreadex(void* security, unsigned stack_size, unsigned (__stdcall* start_address)(void*),
void* arglist, unsigned initflag, unsigned* thrdaddr)
{
DWORD threadID;
ThreadProxyData* data = new ThreadProxyData(start_address,arglist);
HANDLE hthread=CreateThread(static_cast<LPSECURITY_ATTRIBUTES>(security),stack_size,ThreadProxy,
data,initflag,&threadID);
if (hthread==0) {
delete data;
return 0;
}
*thrdaddr=threadID;
return reinterpret_cast<uintptr_t const>(hthread);
}
#endif
}
namespace detail
{
struct thread_exit_callback_node
{
boost::detail::thread_exit_function_base* func;
thread_exit_callback_node* next;
thread_exit_callback_node(boost::detail::thread_exit_function_base* func_,
thread_exit_callback_node* next_):
func(func_),next(next_)
{}
};
}
namespace
{
void run_thread_exit_callbacks()
{
detail::thread_data_ptr current_thread_data(detail::get_current_thread_data(),false);
if(current_thread_data)
{
while(! current_thread_data->tss_data.empty() || current_thread_data->thread_exit_callbacks)
{
while(current_thread_data->thread_exit_callbacks)
{
detail::thread_exit_callback_node* const current_node=current_thread_data->thread_exit_callbacks;
current_thread_data->thread_exit_callbacks=current_node->next;
if(current_node->func)
{
(*current_node->func)();
boost::detail::heap_delete(current_node->func);
}
boost::detail::heap_delete(current_node);
}
for(std::map<void const*,detail::tss_data_node>::iterator next=current_thread_data->tss_data.begin(),
current,
end=current_thread_data->tss_data.end();
next!=end;)
{
current=next;
++next;
if(current->second.func && (current->second.value!=0))
{
(*current->second.func)(current->second.value);
}
current_thread_data->tss_data.erase(current);
}
}
set_current_thread_data(0);
}
}
unsigned __stdcall thread_start_function(void* param)
{
detail::thread_data_base* const thread_info(reinterpret_cast<detail::thread_data_base*>(param));
set_current_thread_data(thread_info);
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
BOOST_TRY
{
#endif
thread_info->run();
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
}
BOOST_CATCH(thread_interrupted const&)
{
}
// Removed as it stops the debugger identifying the cause of the exception
// Unhandled exceptions still cause the application to terminate
// BOOST_CATCH(...)
// {
// std::terminate();
// }
BOOST_CATCH_END
#endif
run_thread_exit_callbacks();
return 0;
}
}
thread::thread() BOOST_NOEXCEPT
{}
bool thread::start_thread_noexcept()
{
uintptr_t const new_thread=_beginthreadex(0,0,&thread_start_function,thread_info.get(),CREATE_SUSPENDED,&thread_info->id);
if(!new_thread)
{
return false;
// boost::throw_exception(thread_resource_error());
}
intrusive_ptr_add_ref(thread_info.get());
thread_info->thread_handle=(detail::win32::handle)(new_thread);
ResumeThread(thread_info->thread_handle);
return true;
}
bool thread::start_thread_noexcept(const attributes& attr)
{
//uintptr_t const new_thread=_beginthreadex(attr.get_security(),attr.get_stack_size(),&thread_start_function,thread_info.get(),CREATE_SUSPENDED,&thread_info->id);
uintptr_t const new_thread=_beginthreadex(0,static_cast<unsigned int>(attr.get_stack_size()),&thread_start_function,thread_info.get(),CREATE_SUSPENDED,&thread_info->id);
if(!new_thread)
{
return false;
// boost::throw_exception(thread_resource_error());
}
intrusive_ptr_add_ref(thread_info.get());
thread_info->thread_handle=(detail::win32::handle)(new_thread);
ResumeThread(thread_info->thread_handle);
return true;
}
thread::thread(detail::thread_data_ptr data):
thread_info(data)
{}
namespace
{
struct externally_launched_thread:
detail::thread_data_base
{
externally_launched_thread()
{
++count;
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
interruption_enabled=false;
#endif
}
~externally_launched_thread() {
BOOST_ASSERT(notify.empty());
notify.clear();
BOOST_ASSERT(async_states_.empty());
async_states_.clear();
}
void run()
{}
void notify_all_at_thread_exit(condition_variable*, mutex*)
{}
private:
externally_launched_thread(externally_launched_thread&);
void operator=(externally_launched_thread&);
};
void make_external_thread_data()
{
externally_launched_thread* me=detail::heap_new<externally_launched_thread>();
BOOST_TRY
{
set_current_thread_data(me);
}
BOOST_CATCH(...)
{
detail::heap_delete(me);
BOOST_RETHROW
}
BOOST_CATCH_END
}
detail::thread_data_base* get_or_make_current_thread_data()
{
detail::thread_data_base* current_thread_data(detail::get_current_thread_data());
if(!current_thread_data)
{
make_external_thread_data();
current_thread_data=detail::get_current_thread_data();
}
return current_thread_data;
}
}
thread::id thread::get_id() const BOOST_NOEXCEPT
{
#if defined BOOST_THREAD_PROVIDES_BASIC_THREAD_ID
detail::thread_data_ptr local_thread_info=(get_thread_info)();
return local_thread_info?local_thread_info->id:0;
//return const_cast<thread*>(this)->native_handle();
#else
return thread::id((get_thread_info)());
#endif
}
bool thread::joinable() const BOOST_NOEXCEPT
{
return (get_thread_info)() ? true : false;
}
bool thread::join_noexcept()
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(local_thread_info)
{
this_thread::interruptible_wait(local_thread_info->thread_handle,detail::timeout::sentinel());
release_handle();
return true;
}
else
{
return false;
}
}
#if defined BOOST_THREAD_USES_DATETIME
bool thread::timed_join(boost::system_time const& wait_until)
{
return do_try_join_until(get_milliseconds_until(wait_until));
}
#endif
bool thread::do_try_join_until_noexcept(uintmax_t milli, bool& res)
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(local_thread_info)
{
if(!this_thread::interruptible_wait(local_thread_info->thread_handle,milli))
{
res=false;
return true;
}
release_handle();
res=true;
return true;
}
else
{
return false;
}
}
void thread::detach()
{
release_handle();
}
void thread::release_handle()
{
thread_info=0;
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void thread::interrupt()
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
if(local_thread_info)
{
local_thread_info->interrupt();
}
}
bool thread::interruption_requested() const BOOST_NOEXCEPT
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
return local_thread_info.get() && (detail::win32::WaitForSingleObject(local_thread_info->interruption_handle,0)==0);
}
unsigned thread::hardware_concurrency() BOOST_NOEXCEPT
{
//SYSTEM_INFO info={{0}};
SYSTEM_INFO info;
GetSystemInfo(&info);
return info.dwNumberOfProcessors;
}
#endif
thread::native_handle_type thread::native_handle()
{
detail::thread_data_ptr local_thread_info=(get_thread_info)();
return local_thread_info?(detail::win32::handle)local_thread_info->thread_handle:detail::win32::invalid_handle_value;
}
detail::thread_data_ptr thread::get_thread_info BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
return thread_info;
}
namespace this_thread
{
namespace
{
LARGE_INTEGER get_due_time(detail::timeout const& target_time)
{
LARGE_INTEGER due_time={{0,0}};
if(target_time.relative)
{
unsigned long const elapsed_milliseconds=detail::win32::GetTickCount64()-target_time.start;
LONGLONG const remaining_milliseconds=(target_time.milliseconds-elapsed_milliseconds);
LONGLONG const hundred_nanoseconds_in_one_millisecond=10000;
if(remaining_milliseconds>0)
{
due_time.QuadPart=-(remaining_milliseconds*hundred_nanoseconds_in_one_millisecond);
}
}
else
{
SYSTEMTIME target_system_time={0,0,0,0,0,0,0,0};
target_system_time.wYear=target_time.abs_time.date().year();
target_system_time.wMonth=target_time.abs_time.date().month();
target_system_time.wDay=target_time.abs_time.date().day();
target_system_time.wHour=(WORD)target_time.abs_time.time_of_day().hours();
target_system_time.wMinute=(WORD)target_time.abs_time.time_of_day().minutes();
target_system_time.wSecond=(WORD)target_time.abs_time.time_of_day().seconds();
if(!SystemTimeToFileTime(&target_system_time,((FILETIME*)&due_time)))
{
due_time.QuadPart=0;
}
else
{
long const hundred_nanoseconds_in_one_second=10000000;
posix_time::time_duration::tick_type const ticks_per_second=
target_time.abs_time.time_of_day().ticks_per_second();
if(ticks_per_second>hundred_nanoseconds_in_one_second)
{
posix_time::time_duration::tick_type const
ticks_per_hundred_nanoseconds=
ticks_per_second/hundred_nanoseconds_in_one_second;
due_time.QuadPart+=
target_time.abs_time.time_of_day().fractional_seconds()/
ticks_per_hundred_nanoseconds;
}
else
{
due_time.QuadPart+=
target_time.abs_time.time_of_day().fractional_seconds()*
(hundred_nanoseconds_in_one_second/ticks_per_second);
}
}
}
return due_time;
}
}
bool interruptible_wait(detail::win32::handle handle_to_wait_for,detail::timeout target_time)
{
detail::win32::handle handles[3]={0};
unsigned handle_count=0;
unsigned wait_handle_index=~0U;
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
unsigned interruption_index=~0U;
#endif
unsigned timeout_index=~0U;
if(handle_to_wait_for!=detail::win32::invalid_handle_value)
{
wait_handle_index=handle_count;
handles[handle_count++]=handle_to_wait_for;
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
if(detail::get_current_thread_data() && detail::get_current_thread_data()->interruption_enabled)
{
interruption_index=handle_count;
handles[handle_count++]=detail::get_current_thread_data()->interruption_handle;
}
#endif
detail::win32::handle_manager timer_handle;
#ifndef UNDER_CE
unsigned const min_timer_wait_period=20;
if(!target_time.is_sentinel())
{
detail::timeout::remaining_time const time_left=target_time.remaining_milliseconds();
if(time_left.milliseconds > min_timer_wait_period)
{
// for a long-enough timeout, use a waitable timer (which tracks clock changes)
timer_handle=CreateWaitableTimer(NULL,false,NULL);
if(timer_handle!=0)
{
LARGE_INTEGER due_time=get_due_time(target_time);
bool const set_time_succeeded=SetWaitableTimer(timer_handle,&due_time,0,0,0,false)!=0;
if(set_time_succeeded)
{
timeout_index=handle_count;
handles[handle_count++]=timer_handle;
}
}
}
else if(!target_time.relative)
{
// convert short absolute-time timeouts into relative ones, so we don't race against clock changes
target_time=detail::timeout(time_left.milliseconds);
}
}
#endif
bool const using_timer=timeout_index!=~0u;
detail::timeout::remaining_time time_left(0);
do
{
if(!using_timer)
{
time_left=target_time.remaining_milliseconds();
}
if(handle_count)
{
unsigned long const notified_index=detail::win32::WaitForMultipleObjects(handle_count,handles,false,using_timer?INFINITE:time_left.milliseconds);
if(notified_index<handle_count)
{
if(notified_index==wait_handle_index)
{
return true;
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
else if(notified_index==interruption_index)
{
detail::win32::ResetEvent(detail::get_current_thread_data()->interruption_handle);
throw thread_interrupted();
}
#endif
else if(notified_index==timeout_index)
{
return false;
}
}
}
else
{
detail::win32::Sleep(time_left.milliseconds);
}
if(target_time.relative)
{
target_time.milliseconds-=detail::timeout::max_non_infinite_wait;
}
}
while(time_left.more);
return false;
}
thread::id get_id() BOOST_NOEXCEPT
{
#if defined BOOST_THREAD_PROVIDES_BASIC_THREAD_ID
return detail::win32::GetCurrentThreadId();
#else
return thread::id(get_or_make_current_thread_data());
#endif
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
void interruption_point()
{
if(interruption_enabled() && interruption_requested())
{
detail::win32::ResetEvent(detail::get_current_thread_data()->interruption_handle);
throw thread_interrupted();
}
}
bool interruption_enabled() BOOST_NOEXCEPT
{
return detail::get_current_thread_data() && detail::get_current_thread_data()->interruption_enabled;
}
bool interruption_requested() BOOST_NOEXCEPT
{
return detail::get_current_thread_data() && (detail::win32::WaitForSingleObject(detail::get_current_thread_data()->interruption_handle,0)==0);
}
#endif
void yield() BOOST_NOEXCEPT
{
detail::win32::Sleep(0);
}
#if defined BOOST_THREAD_PROVIDES_INTERRUPTIONS
disable_interruption::disable_interruption() BOOST_NOEXCEPT:
interruption_was_enabled(interruption_enabled())
{
if(interruption_was_enabled)
{
detail::get_current_thread_data()->interruption_enabled=false;
}
}
disable_interruption::~disable_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interruption_enabled=interruption_was_enabled;
}
}
restore_interruption::restore_interruption(disable_interruption& d) BOOST_NOEXCEPT
{
if(d.interruption_was_enabled)
{
detail::get_current_thread_data()->interruption_enabled=true;
}
}
restore_interruption::~restore_interruption() BOOST_NOEXCEPT
{
if(detail::get_current_thread_data())
{
detail::get_current_thread_data()->interruption_enabled=false;
}
}
#endif
}
namespace detail
{
void add_thread_exit_function(thread_exit_function_base* func)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
thread_exit_callback_node* const new_node=
heap_new<thread_exit_callback_node>(
func,current_thread_data->thread_exit_callbacks);
current_thread_data->thread_exit_callbacks=new_node;
}
tss_data_node* find_tss_data(void const* key)
{
detail::thread_data_base* const current_thread_data(get_current_thread_data());
if(current_thread_data)
{
std::map<void const*,tss_data_node>::iterator current_node=
current_thread_data->tss_data.find(key);
if(current_node!=current_thread_data->tss_data.end())
{
return &current_node->second;
}
}
return NULL;
}
void* get_tss_data(void const* key)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
return current_node->value;
}
return NULL;
}
void add_new_tss_node(void const* key,
boost::shared_ptr<tss_cleanup_function> func,
void* tss_data)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
current_thread_data->tss_data.insert(std::make_pair(key,tss_data_node(func,tss_data)));
}
void erase_tss_node(void const* key)
{
detail::thread_data_base* const current_thread_data(get_or_make_current_thread_data());
current_thread_data->tss_data.erase(key);
}
void set_tss_data(void const* key,
boost::shared_ptr<tss_cleanup_function> func,
void* tss_data,bool cleanup_existing)
{
if(tss_data_node* const current_node=find_tss_data(key))
{
if(cleanup_existing && current_node->func && (current_node->value!=0))
{
(*current_node->func)(current_node->value);
}
if(func || (tss_data!=0))
{
current_node->func=func;
current_node->value=tss_data;
}
else
{
erase_tss_node(key);
}
}
else if(func || (tss_data!=0))
{
add_new_tss_node(key,func,tss_data);
}
}
}
BOOST_THREAD_DECL void __cdecl on_process_enter()
{}
BOOST_THREAD_DECL void __cdecl on_thread_enter()
{}
BOOST_THREAD_DECL void __cdecl on_process_exit()
{
boost::cleanup_tls_key();
}
BOOST_THREAD_DECL void __cdecl on_thread_exit()
{
boost::run_thread_exit_callbacks();
}
BOOST_THREAD_DECL void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk)
{
detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
if(current_thread_data)
{
current_thread_data->notify_all_at_thread_exit(&cond, lk.release());
}
}
//namespace detail {
//
// void BOOST_THREAD_DECL make_ready_at_thread_exit(shared_ptr<shared_state_base> as)
// {
// detail::thread_data_base* const current_thread_data(detail::get_current_thread_data());
// if(current_thread_data)
// {
// current_thread_data->make_ready_at_thread_exit(as);
// }
// }
//}
}

View File

@@ -1,130 +0,0 @@
// Copyright (C) 2001-2003
// William E. Kempf
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// boostinspect:nounnamed
namespace {
const int MILLISECONDS_PER_SECOND = 1000;
const int NANOSECONDS_PER_SECOND = 1000000000;
const int NANOSECONDS_PER_MILLISECOND = 1000000;
const int MICROSECONDS_PER_SECOND = 1000000;
const int NANOSECONDS_PER_MICROSECOND = 1000;
inline void to_time(int milliseconds, boost::xtime& xt)
{
int res = 0;
res = boost::xtime_get(&xt, boost::TIME_UTC_);
assert(res == boost::TIME_UTC_);
xt.sec += (milliseconds / MILLISECONDS_PER_SECOND);
xt.nsec += ((milliseconds % MILLISECONDS_PER_SECOND) *
NANOSECONDS_PER_MILLISECOND);
if (xt.nsec >= NANOSECONDS_PER_SECOND)
{
++xt.sec;
xt.nsec -= NANOSECONDS_PER_SECOND;
}
}
#if defined(BOOST_HAS_PTHREADS)
inline void to_timespec(const boost::xtime& xt, timespec& ts)
{
ts.tv_sec = static_cast<int>(xt.sec);
ts.tv_nsec = static_cast<int>(xt.nsec);
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
inline void to_time(int milliseconds, timespec& ts)
{
boost::xtime xt;
to_time(milliseconds, xt);
to_timespec(xt, ts);
}
inline void to_timespec_duration(const boost::xtime& xt, timespec& ts)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC_);
assert(res == boost::TIME_UTC_);
if (boost::xtime_cmp(xt, cur) <= 0)
{
ts.tv_sec = 0;
ts.tv_nsec = 0;
}
else
{
ts.tv_sec = xt.sec - cur.sec;
ts.tv_nsec = xt.nsec - cur.nsec;
if( ts.tv_nsec < 0 )
{
ts.tv_sec -= 1;
ts.tv_nsec += NANOSECONDS_PER_SECOND;
}
if(ts.tv_nsec >= NANOSECONDS_PER_SECOND)
{
ts.tv_sec += ts.tv_nsec / NANOSECONDS_PER_SECOND;
ts.tv_nsec %= NANOSECONDS_PER_SECOND;
}
}
}
#endif
inline void to_duration(boost::xtime xt, int& milliseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC_);
assert(res == boost::TIME_UTC_);
if (boost::xtime_cmp(xt, cur) <= 0)
milliseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
milliseconds = (int)((xt.sec - cur.sec) * MILLISECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MILLISECOND/2)) /
NANOSECONDS_PER_MILLISECOND);
}
}
inline void to_microduration(boost::xtime xt, int& microseconds)
{
boost::xtime cur;
int res = 0;
res = boost::xtime_get(&cur, boost::TIME_UTC_);
assert(res == boost::TIME_UTC_);
if (boost::xtime_cmp(xt, cur) <= 0)
microseconds = 0;
else
{
if (cur.nsec > xt.nsec)
{
xt.nsec += NANOSECONDS_PER_SECOND;
--xt.sec;
}
microseconds = (int)((xt.sec - cur.sec) * MICROSECONDS_PER_SECOND) +
(((xt.nsec - cur.nsec) + (NANOSECONDS_PER_MICROSECOND/2)) /
NANOSECONDS_PER_MICROSECOND);
}
}
}
// Change Log:
// 1 Jun 01 Initial creation.

View File

@@ -1,77 +0,0 @@
// (C) Copyright Michael Glassford 2004.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_DLL)
#include <boost/thread/detail/tss_hooks.hpp>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#if defined(__BORLANDC__)
extern "C" BOOL WINAPI DllEntryPoint(HINSTANCE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#elif defined(_WIN32_WCE)
extern "C" BOOL WINAPI DllMain(HANDLE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#else
extern "C" BOOL WINAPI DllMain(HINSTANCE /*hInstance*/, DWORD dwReason, LPVOID /*lpReserved*/)
#endif
{
switch(dwReason)
{
case DLL_PROCESS_ATTACH:
{
boost::on_process_enter();
boost::on_thread_enter();
break;
}
case DLL_THREAD_ATTACH:
{
boost::on_thread_enter();
break;
}
case DLL_THREAD_DETACH:
{
boost::on_thread_exit();
break;
}
case DLL_PROCESS_DETACH:
{
boost::on_thread_exit();
boost::on_process_exit();
break;
}
}
return TRUE;
}
namespace boost
{
void tss_cleanup_implemented()
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
}
#endif //defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_DLL)

View File

@@ -1,325 +0,0 @@
// $Id: tss_pe.cpp 84717 2013-06-09 17:18:15Z viboes $
// (C) Copyright Aaron W. LaFramboise, Roland Schwarz, Michael Glassford 2004.
// (C) Copyright 2007 Roland Schwarz
// (C) Copyright 2007 Anthony Williams
// (C) Copyright 2007 David Deakins
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include <boost/thread/detail/config.hpp>
#if defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_LIB)
#if (defined(__MINGW32__) && !defined(_WIN64)) || defined(__MINGW64__) || (__MINGW64_VERSION_MAJOR)
#include <boost/thread/detail/tss_hooks.hpp>
#include <windows.h>
#include <cstdlib>
namespace boost
{
void tss_cleanup_implemented() {}
}
namespace {
void NTAPI on_tls_callback(void* , DWORD dwReason, PVOID )
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
{
boost::on_thread_exit();
break;
}
}
}
}
#if defined(__MINGW64__) || (__MINGW64_VERSION_MAJOR) || (__MINGW32_MAJOR_VERSION >3) || \
((__MINGW32_MAJOR_VERSION==3) && (__MINGW32_MINOR_VERSION>=18))
extern "C"
{
PIMAGE_TLS_CALLBACK __crt_xl_tls_callback__ __attribute__ ((section(".CRT$XLB"))) = on_tls_callback;
}
#else
extern "C" {
void (* after_ctors )() __attribute__((section(".ctors"))) = boost::on_process_enter;
void (* before_dtors)() __attribute__((section(".dtors"))) = boost::on_thread_exit;
void (* after_dtors )() __attribute__((section(".dtors.zzz"))) = boost::on_process_exit;
ULONG __tls_index__ = 0;
char __tls_end__ __attribute__((section(".tls$zzz"))) = 0;
char __tls_start__ __attribute__((section(".tls"))) = 0;
PIMAGE_TLS_CALLBACK __crt_xl_start__ __attribute__ ((section(".CRT$XLA"))) = 0;
PIMAGE_TLS_CALLBACK __crt_xl_end__ __attribute__ ((section(".CRT$XLZ"))) = 0;
}
extern "C" const IMAGE_TLS_DIRECTORY32 _tls_used __attribute__ ((section(".rdata$T"))) =
{
(DWORD) &__tls_start__,
(DWORD) &__tls_end__,
(DWORD) &__tls_index__,
(DWORD) (&__crt_xl_start__+1),
(DWORD) 0,
(DWORD) 0
};
#endif
#elif defined(_MSC_VER) && !defined(UNDER_CE)
#include <boost/thread/detail/tss_hooks.hpp>
#include <stdlib.h>
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
// _pRawDllMainOrig can be defined by including boost/thread/win32/mfc_thread_init.hpp
// into your dll; it ensures that MFC-Dll-initialization will be done properly
// The following code is adapted from the MFC-Dll-init code
/*
* _pRawDllMainOrig MUST be an extern const variable, which will be aliased to
* _pDefaultRawDllMainOrig if no real user definition is present, thanks to the
* alternatename directive.
*/
// work at least with _MSC_VER 1500 (MSVC++ 9.0, VS 2008)
#if (_MSC_VER >= 1500)
extern "C" {
extern BOOL (WINAPI * const _pRawDllMainOrig)(HANDLE, DWORD, LPVOID);
extern BOOL (WINAPI * const _pDefaultRawDllMainOrig)(HANDLE, DWORD, LPVOID) = NULL;
#if defined (_M_IX86)
#pragma comment(linker, "/alternatename:__pRawDllMainOrig=__pDefaultRawDllMainOrig")
#elif defined (_M_X64) || defined (_M_ARM)
#pragma comment(linker, "/alternatename:_pRawDllMainOrig=_pDefaultRawDllMainOrig")
#else /* defined (_M_X64) || defined (_M_ARM) */
#error Unsupported platform
#endif /* defined (_M_X64) || defined (_M_ARM) */
}
#endif
//Definitions required by implementation
#if (_MSC_VER < 1300) // 1300 == VC++ 7.0
typedef void (__cdecl *_PVFV)();
#define INIRETSUCCESS
#define PVAPI void __cdecl
#else
typedef int (__cdecl *_PVFV)();
#define INIRETSUCCESS 0
#define PVAPI int __cdecl
#endif
typedef void (NTAPI* _TLSCB)(HINSTANCE, DWORD, PVOID);
//Symbols for connection to the runtime environment
extern "C"
{
extern DWORD _tls_used; //the tls directory (located in .rdata segment)
extern _TLSCB __xl_a[], __xl_z[]; //tls initializers */
}
namespace
{
//Forward declarations
static PVAPI on_tls_prepare();
static PVAPI on_process_init();
static PVAPI on_process_term();
static void NTAPI on_tls_callback(HINSTANCE, DWORD, PVOID);
//The .CRT$Xxx information is taken from Codeguru:
//http://www.codeguru.com/Cpp/misc/misc/threadsprocesses/article.php/c6945__2/
#if (_MSC_VER >= 1400)
#pragma section(".CRT$XIU",long,read)
#pragma section(".CRT$XCU",long,read)
#pragma section(".CRT$XTU",long,read)
#pragma section(".CRT$XLC",long,read)
__declspec(allocate(".CRT$XLC")) _TLSCB __xl_ca=on_tls_callback;
__declspec(allocate(".CRT$XIU"))_PVFV p_tls_prepare = on_tls_prepare;
__declspec(allocate(".CRT$XCU"))_PVFV p_process_init = on_process_init;
__declspec(allocate(".CRT$XTU"))_PVFV p_process_term = on_process_term;
#else
#if (_MSC_VER >= 1300) // 1300 == VC++ 7.0
# pragma data_seg(push, old_seg)
#endif
//Callback to run tls glue code first.
//I don't think it is necessary to run it
//at .CRT$XIB level, since we are only
//interested in thread detachement. But
//this could be changed easily if required.
#pragma data_seg(".CRT$XIU")
static _PVFV p_tls_prepare = on_tls_prepare;
#pragma data_seg()
//Callback after all global ctors.
#pragma data_seg(".CRT$XCU")
static _PVFV p_process_init = on_process_init;
#pragma data_seg()
//Callback for tls notifications.
#pragma data_seg(".CRT$XLB")
_TLSCB p_thread_callback = on_tls_callback;
#pragma data_seg()
//Callback for termination.
#pragma data_seg(".CRT$XTU")
static _PVFV p_process_term = on_process_term;
#pragma data_seg()
#if (_MSC_VER >= 1300) // 1300 == VC++ 7.0
# pragma data_seg(pop, old_seg)
#endif
#endif
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable:4189)
#endif
PVAPI on_tls_prepare()
{
//The following line has an important side effect:
//if the TLS directory is not already there, it will
//be created by the linker. In other words, it forces a tls
//directory to be generated by the linker even when static tls
//(i.e. __declspec(thread)) is not used.
//The volatile should prevent the optimizer
//from removing the reference.
DWORD volatile dw = _tls_used;
#if (_MSC_VER < 1300) // 1300 == VC++ 7.0
_TLSCB* pfbegin = __xl_a;
_TLSCB* pfend = __xl_z;
_TLSCB* pfdst = pfbegin;
//pfdst = (_TLSCB*)_tls_used.AddressOfCallBacks;
//The following loop will merge the address pointers
//into a contiguous area, since the tlssup code seems
//to require this (at least on MSVC 6)
while (pfbegin < pfend)
{
if (*pfbegin != 0)
{
*pfdst = *pfbegin;
++pfdst;
}
++pfbegin;
}
*pfdst = 0;
#endif
return INIRETSUCCESS;
}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
PVAPI on_process_init()
{
//Schedule on_thread_exit() to be called for the main
//thread before destructors of global objects have been
//called.
//It will not be run when 'quick' exiting the
//library; however, this is the standard behaviour
//for destructors of global objects, so that
//shouldn't be a problem.
atexit(boost::on_thread_exit);
//Call Boost process entry callback here
boost::on_process_enter();
return INIRETSUCCESS;
}
PVAPI on_process_term()
{
boost::on_process_exit();
return INIRETSUCCESS;
}
void NTAPI on_tls_callback(HINSTANCE /*h*/, DWORD dwReason, PVOID /*pv*/)
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
boost::on_thread_exit();
break;
}
}
#if (_MSC_VER >= 1500)
BOOL WINAPI dll_callback(HANDLE hInstance, DWORD dwReason, LPVOID lpReserved)
#else
BOOL WINAPI dll_callback(HANDLE, DWORD dwReason, LPVOID)
#endif
{
switch (dwReason)
{
case DLL_THREAD_DETACH:
boost::on_thread_exit();
break;
case DLL_PROCESS_DETACH:
boost::on_process_exit();
break;
}
#if (_MSC_VER >= 1500)
if( _pRawDllMainOrig )
{
return _pRawDllMainOrig(hInstance, dwReason, lpReserved);
}
#endif
return true;
}
} //namespace
extern "C"
{
extern BOOL (WINAPI * const _pRawDllMain)(HANDLE, DWORD, LPVOID)=&dll_callback;
}
namespace boost
{
void tss_cleanup_implemented()
{
/*
This function's sole purpose is to cause a link error in cases where
automatic tss cleanup is not implemented by Boost.Threads as a
reminder that user code is responsible for calling the necessary
functions at the appropriate times (and for implementing an a
tss_cleanup_implemented() function to eliminate the linker's
missing symbol error).
If Boost.Threads later implements automatic tss cleanup in cases
where it currently doesn't (which is the plan), the duplicate
symbol error will warn the user that their custom solution is no
longer needed and can be removed.
*/
}
}
#endif //defined(_MSC_VER) && !defined(UNDER_CE)
#endif //defined(BOOST_HAS_WINTHREADS) && defined(BOOST_THREAD_BUILD_LIB)