[TUTORIALS] Removed #noformat in layer norm tutorial

This commit is contained in:
Philippe Tillet
2022-05-12 12:41:25 -07:00
parent c736ba7c3e
commit 0835a4fb05

View File

@@ -16,14 +16,13 @@ try:
except ModuleNotFoundError:
HAS_APEX = False
# fmt: off
@triton.jit
def _layer_norm_fwd_fused(
Out,
A,
Weight,
Bias,
Out,
A,
Weight,
Bias,
Mean, Rstd,
stride, N, eps,
BLOCK_SIZE: tl.constexpr,
@@ -37,17 +36,17 @@ def _layer_norm_fwd_fused(
_mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
a = tl.load(A + cols, mask=cols<N, other=0., eviction_policy="evict_last").to(tl.float32)
a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32)
_mean += a
mean = tl.sum(_mean, axis = 0) / N
mean = tl.sum(_mean, axis=0) / N
# compute variance
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
a = tl.load(A + cols, mask=cols<N, other=0., eviction_policy="evict_last").to(tl.float32)
a = tl.where(cols<N, a - mean, 0.)
a = tl.load(A + cols, mask=cols < N, other=0., eviction_policy="evict_last").to(tl.float32)
a = tl.where(cols < N, a - mean, 0.)
_var += a * a
var = tl.sum(_var, axis = 0) / N
var = tl.sum(_var, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
# write-back mean/rstd
tl.store(Mean + row, mean)
@@ -65,22 +64,24 @@ def _layer_norm_fwd_fused(
tl.store(Out + cols, out, mask=mask)
# Backward pass (DA + partial DW + partial DB)
@triton.jit
def _layer_norm_bwd_dx_fused(
_DA,
_DOut,
_DA,
_DOut,
_A,
Weight,
Mean, Rstd,
stride, NumRows, NumCols, eps,
stride, NumRows, NumCols, eps,
BLOCK_SIZE_N: tl.constexpr,
):
# position of elements processed by this program
pid = tl.program_id(0)
row = pid
A = _A + row*stride
DOut = _DOut + row*stride
DA = _DA + row*stride
A = _A + row * stride
DOut = _DOut + row * stride
DA = _DA + row * stride
mean = tl.load(Mean + row)
rstd = tl.load(Rstd + row)
# load data to SRAM
@@ -117,8 +118,8 @@ def _layer_norm_bwd_dx_fused(
def _layer_norm_bwd_dwdb(
A, DOut,
Mean, Var,
DW,
DB,
DW,
DB,
M, N,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
@@ -129,12 +130,12 @@ def _layer_norm_bwd_dwdb(
db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for i in range(0, M, BLOCK_SIZE_M):
rows = i + tl.arange(0, BLOCK_SIZE_M)
mask = (rows[:, None] < M) & (cols[None,:] < N)
offs = rows[:, None] * N + cols[None,:]
a = tl.load(A + offs, mask=mask, other=0.).to(tl.float32)
mask = (rows[:, None] < M) & (cols[None, :] < N)
offs = rows[:, None] * N + cols[None, :]
a = tl.load(A + offs, mask=mask, other=0.).to(tl.float32)
dout = tl.load(DOut + offs, mask=mask, other=0.).to(tl.float32)
mean = tl.load(Mean + rows, mask=rows<M, other=0.)
rstd = tl.load(Var + rows, mask=rows<M, other=0.)
mean = tl.load(Mean + rows, mask=rows < M, other=0.)
rstd = tl.load(Var + rows, mask=rows < M, other=0.)
a_hat = (a - mean[:, None]) * rstd[:, None]
dw += dout * a_hat
db += dout
@@ -162,10 +163,10 @@ class LayerNorm(torch.autograd.Function):
# heuristics for number of warps
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
_layer_norm_fwd_fused[(M,)](
out,
a_arg,
weight,
bias,
out,
a_arg,
weight,
bias,
mean, rstd,
a_arg.stride(0), N, eps,
BLOCK_SIZE=BLOCK_SIZE,
@@ -192,18 +193,18 @@ class LayerNorm(torch.autograd.Function):
# heuristics for amount of parallel reduction stream for DG/DB
N = weight.shape[0]
# allocate output
da = torch.empty_like(dout)
da = torch.empty_like(dout)
# enqueue kernel using forward pass heuristics
# also compute partial sums for DW and DB
x_arg = a.reshape(-1, a.shape[-1])
M, N = x_arg.shape
dweight = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device)
dbias = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device)
dweight = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device)
dbias = torch.empty((weight.shape[0],), dtype=weight.dtype, device=weight.device)
_layer_norm_bwd_dx_fused[(M,)](
da,
dout,
a,
weight,
da,
dout,
a,
weight,
mean, var,
x_arg.stride(0), M, N,
ctx.eps,
@@ -216,7 +217,7 @@ class LayerNorm(torch.autograd.Function):
a, dout,
mean, var,
dweight,
dbias,
dbias,
M,
N,
BLOCK_SIZE_M=32,
@@ -235,6 +236,7 @@ class LayerNorm(torch.autograd.Function):
def layer_norm(a, normalized_shape, weight, bias, eps):
return LayerNorm.apply(a, normalized_shape, weight, bias, eps)
def test_layer_norm(M, N, dtype, eps=1e-5, device='cuda'):
torch.manual_seed(0)
# create data