[GENERAL] Merged v1.0alpha into master. Added features are:
- A100 support via mma.16816 - Thread swizzling for conflict-free shared memory accesses without padding - Complete overhaul of the LLVM code generation in codegen/selection/generator.cc to remove overengineering - Added debugging capabilities in the Python binding - Compilation error for kernels that spill
This commit is contained in:
@@ -171,7 +171,7 @@ class _conv(torch.autograd.Function):
|
||||
_conv.kernel[dtype] = (delta, triton.kernel(_conv.src, num_warps=[2, 4], defines=defines))
|
||||
delta, kernel = _conv.kernel[dtype]
|
||||
# allocate output
|
||||
c = triton.empty([Z, CO, P, Q], dtype=dtype)
|
||||
c = torch.empty([Z, CO, P, Q], dtype=dtype)
|
||||
# enqueue
|
||||
grid = lambda opt: [triton.cdiv(Z*P*Q, opt.d('TM')),
|
||||
triton.cdiv(CO, opt.d('TN'))]
|
||||
|
@@ -3,6 +3,9 @@ import triton
|
||||
|
||||
class _dot(torch.autograd.Function):
|
||||
src = """
|
||||
#define STM 4
|
||||
#define STN 4
|
||||
|
||||
__global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
TYPE * B __noalias __readonly __aligned(16),
|
||||
TYPE * C __noalias __aligned(16),
|
||||
@@ -14,20 +17,26 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
int ldb __multipleof(8),
|
||||
int ldc __multipleof(8)) {
|
||||
// prologue
|
||||
int ridx = get_program_id(0);
|
||||
int ridy = get_program_id(1);
|
||||
int ridz = get_program_id(2);
|
||||
int gridx = M / TM;
|
||||
int gridy = N / TN;
|
||||
int rid = ridx + ridy * gridx;
|
||||
ridx = rid / gridy;
|
||||
ridy = rid % gridy;
|
||||
int rm[TM] = ridx * TM + 0 ... TM;
|
||||
int rn[TN] = ridy * TN + 0 ... TN;
|
||||
int pid = get_program_id(0);
|
||||
int pidz = get_program_id(2);
|
||||
int gridm = M / TM;
|
||||
int gridn = N / TN;
|
||||
int stgridm = (gridm + STM - 1) / STM;
|
||||
int stgridn = (gridn + STN - 1) / STN;
|
||||
int stid = pid / (STM * STN);
|
||||
int laneid = pid % (STM * STN);
|
||||
int stm = stid / stgridn;
|
||||
int stn = stid % stgridn;
|
||||
int lanem = laneid / STN;
|
||||
int lanen = laneid % STN;
|
||||
int pidm = stm*STM + lanem;
|
||||
int pidn = stn*STN + lanen;
|
||||
int rm[TM] = pidm * TM + 0 ... TM;
|
||||
int rn[TN] = pidn * TN + 0 ... TN;
|
||||
|
||||
// reduction splitting
|
||||
K = K / TZ;
|
||||
int rk[TK] = ridz * K + 0 ... TK;
|
||||
int rk[TK] = pidz * K + 0 ... TK;
|
||||
|
||||
// pointers to operands
|
||||
int offa[TM, TK] = rk[newaxis, :] * STRIDE_AK + rm[:, newaxis] * STRIDE_AM;
|
||||
@@ -44,11 +53,11 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
// reduction loop
|
||||
float acc[TM, TN] = 0;
|
||||
for(int k = K; k > 0; k -= TK){
|
||||
acc += a @ b;
|
||||
bool checka[TM, TK] = k > TK;
|
||||
bool checkb[TK, TN] = k > TK;
|
||||
pa += TK * STRIDE_AK;
|
||||
pb += TK * STRIDE_BK;
|
||||
acc += a @ b;
|
||||
a = *?(checka)pa;
|
||||
b = *?(checkb)pb;
|
||||
}
|
||||
@@ -56,8 +65,8 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
TYPE c[TM, TN] = acc;
|
||||
|
||||
// epilogue
|
||||
int rxm[TM] = ridx * TM + 0 ... TM;
|
||||
int rxn[TN] = ridy * TN + 0 ... TN;
|
||||
int rxm[TM] = pidm * TM + 0 ... TM;
|
||||
int rxn[TN] = pidn * TN + 0 ... TN;
|
||||
int offc[TM, TN] = rxm[:, newaxis] * ldc + rxn[newaxis, :];
|
||||
TYPE* pc[TM, TN] = C + offc;
|
||||
bool checkc[TM, TN] = (rxm[:, newaxis] < M) && (rxn[newaxis, :] < N);
|
||||
@@ -66,7 +75,7 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
*?(checkc) pc = c;
|
||||
#else
|
||||
// accumulate partial result using spin-locks
|
||||
int *plock = locks + rid;
|
||||
int *plock = locks + pid;
|
||||
int *pcount = plock + get_num_programs(0) * get_num_programs(1);
|
||||
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
|
||||
int count = *pcount;
|
||||
@@ -100,7 +109,7 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
'STRIDE_BN': '1', 'STRIDE_BK': 'ldb',
|
||||
'TM' : [128],
|
||||
'TN' : [128],
|
||||
'TK' : [16],
|
||||
'TK' : [32],
|
||||
'TZ' : [1]
|
||||
}
|
||||
_dot.kernel[dtype] = triton.kernel(_dot.src, num_warps=[4], defines=defines)
|
||||
@@ -109,9 +118,10 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
M, K = a.shape
|
||||
K, N = b.shape
|
||||
c = torch.empty([M,N], dtype=dtype, device=a.device)
|
||||
print(kernel.asm('sass', c.device))
|
||||
print(kernel.asm('ptx', c.device))
|
||||
# enqueue
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM')),
|
||||
triton.cdiv(N, opt.d('TN'))]
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM'))*triton.cdiv(N, opt.d('TN'))]
|
||||
time = kernel(a, b, c, 1., M, N, K,
|
||||
a.stride(0), b.stride(0), c.stride(0), grid=grid)
|
||||
return c
|
||||
@@ -130,6 +140,4 @@ b = torch.rand((K, N)).cuda().half()
|
||||
|
||||
zc = torch.matmul(a,b)
|
||||
zc_ = dot(a,b)
|
||||
|
||||
|
||||
print(torch.allclose(zc, zc_))
|
Reference in New Issue
Block a user