Added exhaustive search backend
This commit is contained in:
@@ -1,57 +1,39 @@
|
||||
import array
|
||||
import numpy as np
|
||||
import random
|
||||
import time
|
||||
import sys
|
||||
|
||||
from deap import algorithms
|
||||
import itertools
|
||||
|
||||
import tools
|
||||
import deap.tools
|
||||
|
||||
from deap import base
|
||||
from deap import creator
|
||||
from deap import tools
|
||||
from genetic import GeneticOperators
|
||||
from genetic import eaMuPlusLambda
|
||||
|
||||
from genetic_operators import GeneticOperators
|
||||
|
||||
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
# Begin the generational process
|
||||
gen = 0
|
||||
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||
start_time = time.time()
|
||||
while time.time() - start_time < maxtime and gen < maxgen:
|
||||
# Vary the population
|
||||
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
|
||||
|
||||
# Evaluate the individuals with an invalid fitness
|
||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
||||
for ind, fit in zip(invalid_ind, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
# Update the hall of fame with the generated individuals
|
||||
if halloffame is not None:
|
||||
halloffame.update(offspring)
|
||||
|
||||
# Select the next generation population
|
||||
population[:] = toolbox.select(population + offspring, mu)
|
||||
|
||||
# Update the statistics with the new population
|
||||
gen = gen + 1
|
||||
|
||||
best_profile = '(%s)'%','.join(map(str,halloffame[0]));
|
||||
best_performance = compute_perf(halloffame[0].fitness.values[0])
|
||||
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||
sys.stdout.write('\n')
|
||||
return population
|
||||
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||
device = context.devices[0]
|
||||
nvalid = 0
|
||||
current = 0
|
||||
minT = float('inf')
|
||||
for individual in itertools.product(*all_parameters):
|
||||
template = build_template(TemplateType.Parameters(*individual))
|
||||
if not tools.skip(template, statement, device):
|
||||
nvalid = nvalid + 1
|
||||
for individual in itertools.product(*all_parameters):
|
||||
template = build_template(TemplateType.Parameters(*individual))
|
||||
try:
|
||||
T = tools.benchmark(template,statement,device)
|
||||
current = current + 1
|
||||
if T < minT:
|
||||
minT = T
|
||||
best = individual
|
||||
print '%d / %d , Best is %d %s for %s\r'%(current, nvalid, compute_perf(minT), perf_metric, best)
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||
gen = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
@@ -68,12 +50,12 @@ def genetic(statement, context, TemplateType, build_template, parameter_names, a
|
||||
toolbox.register("select", tools.selBest)
|
||||
|
||||
pop = toolbox.population(n=30)
|
||||
hof = tools.HallOfFame(1)
|
||||
hof = deap.tools.HallOfFame(1)
|
||||
|
||||
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
|
||||
best_profile = lambda x: '(%s)'%','.join(map(str,hof[0]))
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats = deap.tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
|
||||
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
|
||||
|
||||
|
Reference in New Issue
Block a user