[examples] added skeleton for pytorch wrapper

This commit is contained in:
Philippe Tillet
2019-05-03 14:30:06 -04:00
parent 208d1525de
commit 0d694445e6
8 changed files with 181 additions and 15 deletions

View File

@@ -1 +1,2 @@
add_subdirectory(tensorflow)
add_subdirectory(pytorch)

View File

@@ -0,0 +1,6 @@
find_package(Torch)
if(${Torch_FOUND})
add_library(torch_triton SHARED conv.cpp)
target_compile_features(torch_triton PRIVATE cxx_range_for)
target_link_libraries(torch_triton "${TORCH_LIBRARIES}")
endif()

View File

@@ -0,0 +1,30 @@
#include <torch/torch.h>
#include <vector>
#define CHECK_CUDA(x) AT_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
at::Tensor conv_forward(
const at::Tensor data,
const at::Tensor weight) {
// Check
CHECK_INPUT(data);
CHECK_INPUT(weight);
// Unpack data shapes
const auto B = data.size(0);
const auto Ci = data.size(1);
const auto H = data.size(2);
const auto W = data.size(3);
// Unpack weight shapes
const auto Cf = weight.size(0);
const auto R = weight.size(1);
const auto S = weight.size(2);
const auto K = weight.size(3);
// Create output
AT_CHECK(Ci == Cf, "Number of channels in data and weights must match");
return at::empty({B, K, H, W}, at::kFloat);
}
static auto registry =
torch::jit::RegisterOperators("triton::conv::forward", &conv_forward);

View File

@@ -0,0 +1,11 @@
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.cpp_extension import load
from torch.distributions import categorical
from itertools import product
conv_triton = load( 'conv_triton', ['conv.cpp', 'conv.cu'], extra_cflags=['-O3'])

View File

@@ -1,14 +1,10 @@
execute_process(COMMAND python -c "from os.path import dirname; import tensorflow as tf; print(dirname(dirname(tf.sysconfig.get_include())))"
OUTPUT_VARIABLE TF_INC OUTPUT_STRIP_TRAILING_WHITESPACE)
execute_process(COMMAND python -c "import tensorflow as tf; print(tf.sysconfig.get_lib())"
OUTPUT_VARIABLE TF_LIB OUTPUT_STRIP_TRAILING_WHITESPACE)
execute_process(COMMAND python -c "import tensorflow as tf; print(tf.__cxx11_abi_flag__ if \"__cxx11_abi_flag__\" in tf.__dict__ else 0)"
OUTPUT_VARIABLE TF_ABI OUTPUT_STRIP_TRAILING_WHITESPACE)
set(CUDA_HOME "/usr/local/cuda")
include_directories("${TF_INC}/tensorflow/include")
include_directories("${CUDA_HOME}/include")
link_directories(${TF_LIB})
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
add_library(tf_blocksparse SHARED blocksparse.cpp)
target_link_libraries(tf_blocksparse tensorflow_framework triton)
find_package(TensorFlow)
if(${TensorFlow_FOUND})
set(CUDA_HOME "/usr/local/cuda")
include_directories("${TF_INC}/tensorflow/include")
include_directories("${CUDA_HOME}/include")
link_directories(${TF_LIB})
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0)
add_library(tf_blocksparse SHARED blocksparse.cpp)
target_link_libraries(tf_blocksparse tensorflow_framework triton)
endif()