[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-29 00:51:48 +00:00
parent 287ed5ceeb
commit 0eaa2d3583
165 changed files with 286 additions and 286 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 39.198 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.967 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
0 256.0 512.000001 546.133347 192.752942
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 814.163950 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.546756 199.012395
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 20.954 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.856 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -573,37 +573,37 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 40.140799 39.025776
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.467336 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.500614 ... 85.998493 85.632545
16 2304.0 68.348707 ... 76.809875 76.563695
17 2432.0 71.305746 ... 75.118889 84.877538
18 2560.0 77.833728 ... 81.310171 80.709358
19 2688.0 83.369354 ... 90.316801 89.254248
20 2816.0 83.074685 ... 83.552120 82.602666
21 2944.0 81.832567 ... 80.251257 81.967162
22 3072.0 82.062468 ... 88.473602 88.335577
23 3200.0 82.262212 ... 91.822093 92.352095
24 3328.0 83.130825 ... 84.596116 84.397770
25 3456.0 80.300370 ... 88.595129 90.994998
26 3584.0 87.594146 ... 95.756542 97.628001
27 3712.0 85.163978 ... 86.304403 89.513749
28 3840.0 80.139129 ... 91.701494 85.930069
29 3968.0 90.859224 ... 84.040329 89.657558
30 4096.0 86.339677 ... 93.206754 90.200084
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 61.636381
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 86.367588 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.277839 ... 89.254248 88.422041
20 2816.0 79.298560 ... 82.759409 83.233226
21 2944.0 82.373605 ... 82.373605 80.510553
22 3072.0 82.003045 ... 88.473602 87.516392
23 3200.0 84.656085 ... 95.736729 94.674553
24 3328.0 82.891535 ... 83.130825 81.162679
25 3456.0 81.683457 ... 91.407671 90.994998
26 3584.0 84.905948 ... 90.364394 95.553020
27 3712.0 85.528545 ... 82.220033 88.640059
28 3840.0 81.859361 ... 86.130841 90.872641
29 3968.0 85.812429 ... 90.589410 85.751184
30 4096.0 93.142072 ... 91.304576 88.243079
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 19.110 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 25.284 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 319.168844
1 1536.0 354.461542 133.565214 341.333333
2 2048.0 427.408686 159.067963 323.368435
3 2560.0 461.954908 181.775141 328.556154
4 3072.0 511.999982 191.005181 319.168834
5 3584.0 554.941930 207.267476 310.527060
6 4096.0 568.231237 219.919464 302.473845
7 4608.0 502.690905 233.316456 286.507772
8 5120.0 531.948056 241.414550 284.444444
9 5632.0 545.032265 244.426754 291.310338
10 6144.0 548.163546 250.775512 286.879370
11 6656.0 532.479975 256.000009 286.279570
12 7168.0 513.528374 256.764187 281.098038
13 7680.0 486.332448 264.827585 283.569230
14 8192.0 464.794337 260.407952 278.876591
15 8704.0 416.958106 267.472468 285.377055
16 9216.0 431.157889 272.059034 287.999990
17 9728.0 438.857162 280.278512 289.308559
18 10240.0 446.836366 287.102804 291.530244
19 10752.0 432.966444 246.699797 290.922209
20 11264.0 429.104745 246.432094 288.512281
21 11776.0 423.089806 249.007923 288.981596
22 12288.0 421.905564 254.234486 294.617366
23 12800.0 415.135142 253.884294 289.811310
24 13312.0 411.711355 253.160074 289.916513
25 13824.0 405.098897 256.991469 292.056329
26 14336.0 397.761846 255.619613 288.886653
27 14848.0 382.351933 257.293872 289.012175
28 15360.0 377.318326 258.151252 287.438599
29 15872.0 369.832994 261.986243 290.562936
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 511.999982 191.501303 319.168834
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 300.623865
7 4608.0 498.162157 231.849059 287.999990
8 5120.0 525.128191 242.845844 287.102804
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 262.243907 288.644296
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 268.957600 287.018988
15 8704.0 416.958106 267.472468 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.767793 289.811322
19 10752.0 429.364408 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.673582 295.207195
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.586664 257.108233 289.246765
28 15360.0 374.634130 257.790220 286.656296
29 15872.0 366.982663 262.890274 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.629 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.368 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:30.902</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:49.485</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:19.110</p></td>
<td><p>05:25.284</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:20.954</p></td>
<td><p>03:23.856</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.629</p></td>
<td><p>02:12.368</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:39.198</p></td>
<td><p>01:47.967</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>