Simple linear model

This commit is contained in:
Philippe Tillet
2014-09-28 19:37:56 -04:00
parent 693b8b67b0
commit 0eb56a10f0
4 changed files with 87 additions and 33 deletions

View File

@@ -12,6 +12,8 @@ from pyviennacl import backend
from pyviennacl import opencl
from pyviennacl import atidlas
from dataset import generate_dataset
from model import train_model
import tools
import utils
import vclio
@@ -66,11 +68,10 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
sys.stderr.write('Warning : The device ' + device.name + ' does not support double precision! Skipping ...')
continue
#Helper
def execute(node, other_params, sizes, fname = os.devnull):
def execute(statement, other_params, sizes, fname = os.devnull):
print('-----')
print(' '.join(map(str, ("Now tuning:", datatype.__name__, '-', operation, '-'.join(other_params), '[' + device.name, '(' + device.platform.name + ')] for sizes', sizes))))
with open(fname, "w+") as archive:
with vcl.Statement(node) as statement:
return optimize.genetic(statement, ctx, TYPES[operation]['template'], lambda p: TYPES[operation]['template'](p, *other_params),
TYPES[operation]['parameter-names'], lambda t: TYPES[operation]['perf-index']([datatype().itemsize, sizes, t]), TYPES[operation]['perf-measure'], archive)
s = map_to_list((int, p['size']))
@@ -100,7 +101,7 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
if 'all' in layouts:
layouts = ['NN', 'NT', 'TN', 'TT']
for layout in layouts:
def execution_handler(sizes, fname):
def execution_handler(sizes, fname, parameters=None):
A_trans = layout[0]
B_trans = layout[1]
A = vcl.Matrix((sizes[0], sizes[1]) if A_trans=='N' else (sizes[1],sizes[0]), context=ctx, dtype=datatype, layout=vcl.COL_MAJOR);
@@ -110,8 +111,15 @@ def do_tuning(config_fname, spec_fname, viennacl_root):
alpha = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
beta = vcl.HostScalar(1.0, context=ctx, dtype = datatype)
C = vcl.Matrix((sizes[0], sizes[2]), context=ctx, dtype = datatype, layout=vcl.COL_MAJOR)
execute(vcl.Assign(C,LHS*RHS*alpha + C*beta),(A_trans, B_trans), sizes, fname)
generate_dataset(operation, execution_handler)
statement = vcl.Statement(vcl.Assign(C,LHS*RHS*alpha + C*beta))
if parameters:
TemplateType = TYPES[operation]['template']
return tools.benchmark(TemplateType(TemplateType.Parameters(*parameters),A_trans,B_trans), statement, device)
else:
execute(statement,(A_trans, B_trans), sizes, fname)
X, Y, profiles = generate_dataset(TYPES[operation]['template'], execution_handler)
train_model(X, Y, profiles)
if __name__ == "__main__":

View File

@@ -1,11 +1,19 @@
import os
import sys
import re
import random
import numpy as np
from sklearn.neighbors.kde import KernelDensity;
from pyviennacl.atidlas import FetchingPolicy
def generate_dataset(operation, execution_handler):
I = 5
def decode(y):
fetch = [FetchingPolicy.FETCH_FROM_LOCAL, FetchingPolicy.FETCH_FROM_GLOBAL_CONTIGUOUS, FetchingPolicy.FETCH_FROM_GLOBAL_STRIDED]
y[7] = fetch[y[7]]
y[8] = fetch[y[8]]
return y
def generate_dataset(TemplateType, execution_handler):
I = 0
step = 64;
max_size = 4000;
@@ -56,7 +64,6 @@ def generate_dataset(operation, execution_handler):
if tuple(x) not in Xtuples:
break;
x = x.astype(int)
x = [2048, 2048, 512]
fname = os.path.join(path, `x[0]` +"-"+ `x[1]` +"-"+ `x[2]` +".csv")
#Execute auto-tuning procedure
execution_handler(x, fname)
@@ -79,7 +86,6 @@ def generate_dataset(operation, execution_handler):
print "Exporting data...";
#Shuffle the list of file
files = os.listdir(path)
random.shuffle(files)
X = np.empty((len(files),3))
Y = np.zeros((len(files), len(profiles)))
for i,fname in enumerate(files):
@@ -89,11 +95,7 @@ def generate_dataset(operation, execution_handler):
A = np.loadtxt(fl,delimiter=',')
for j,y in enumerate(profiles):
idx = np.where(np.all(A[:,1:]==y,axis=1))[0]
if idx.size:
Y[i,j] = 2*1e-9*X[i,0]*X[i,1]*X[i,2]/A[idx[0],0]
else:
sys.exit('Data invalid! Were all the data csv files generated using the same auto-tuner options?')
np.savetxt(export_path+'X.csv', X)
np.savetxt(export_path+'Y.csv', Y)
np.savetxt(export_path+'profiles.csv', profiles)
open(export_path+'pad.csv', 'w').write(str(pad))
T = A[idx[0], 0] if idx.size else execution_handler(map(int,X[i,:]), '', decode(map(int, y)))
Y[i,j] = 2*1e-9*X[i,0]*X[i,1]*X[i,2]/T
return X, Y, profiles

44
autotune/python/model.py Normal file
View File

@@ -0,0 +1,44 @@
from sklearn import *;
from sklearn import ensemble;
import numpy as np
import scipy as sp
def train_model(X, Y, profiles):
#Preprocessing
scaler = preprocessing.StandardScaler().fit(X);
X = scaler.transform(X);
ref = np.argmax(np.bincount(np.argmax(Y, axis=1))) #most common profile
print Y
print np.bincount(np.argmax(Y, axis=1))
#Cross-validation data-sets
cut = int(0.5*X.shape[0]+1);
XTr = X[0:cut, :];
YTr = Y[0:cut, :];
XTe = X[cut:,:];
YTe = Y[cut:,:];
#Train the model
print("Training the model...");
clf = linear_model.LinearRegression().fit(XTr,YTr);
#Evaluate the model
GFlops = np.empty(XTe.shape[0]);
speedups = np.empty(XTe.shape[0]);
optspeedups = np.empty(XTe.shape[0]);
for i,x in enumerate(XTe):
predictions = clf.predict(x);
label = np.argmax(predictions);
speedups[i] = YTe[i,label]/YTe[i,ref];
optspeedups[i] = np.max(YTe[i,:])/YTe[i,ref];
GFlops[i] = YTe[i,ref];
np.set_printoptions(precision=2);
print("-----------------");
print("Average testing speedup : %f (Optimal : %f)"%(sp.stats.gmean(speedups), sp.stats.gmean(optspeedups)));
print("Average GFLOP/s : %f (Default %f, Optimal %f)"%(np.mean(np.multiply(GFlops,speedups)), np.mean(GFlops), np.mean(np.multiply(GFlops,optspeedups))));
print("Minimum speedup is %f wrt %i GFlops"%(np.min(speedups), GFlops[np.argmin(speedups)]));
print("Maximum speedup is %f wrt %i GFlops"%(np.max(speedups), GFlops[np.argmax(speedups)]));
print("--------");
print clf

View File

@@ -122,7 +122,7 @@ def benchmark(template, statement, device):
if occupancy_record.occupancy < 15 :
raise ValueError("Template has too low occupancy")
else:
try:
#~ try:
template.execute(statement, True)
statement.result.context.finish_all_queues()
N = 0
@@ -134,5 +134,5 @@ def benchmark(template, statement, device):
current_time += time.time() - time_before
N+=1
return current_time/N
except:
raise ValueError("Invalid template")
#~ except:
#~ raise ValueError("Invalid template")