[python][tensorflow] basic op generation is working
This commit is contained in:
@@ -4,6 +4,7 @@ import distutils
|
||||
import distutils.log
|
||||
import setuptools.command.build_ext
|
||||
import setuptools
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
src = """
|
||||
@@ -45,23 +46,25 @@ void matmul(restrict read_only align(16) half *A,
|
||||
}
|
||||
"""
|
||||
|
||||
extra_ops = tf.load_op_library('/home/philippe/development/triton/python/build/lib.linux-x86_64-3.6/libextra_tf_ops.so')
|
||||
|
||||
|
||||
with open('test.cpp', 'w+') as test:
|
||||
src = libtriton.make_tensorflow_src(src, [2], '(M + #TM - 1)/#TM, (N + #TN - 1)/#TN, 1')
|
||||
test.writelines(src)
|
||||
|
||||
triton_include_dirs = ['/home/philippe/development/triton/include']
|
||||
tensorflow_include_dirs = [tf.sysconfig.get_include()]
|
||||
llvm_include_dirs = ['/usr/include/llvm-8/', '/usr/include/llvm-c-8/']
|
||||
cuda_include_dirs = ['/usr/local/cuda-10.1/targets/x86_64-linux/include/']
|
||||
|
||||
triton_library_dirs = [os.path.realpath(libtriton.__file__)]
|
||||
triton_library_dirs = [os.path.realpath(os.path.join(libtriton.__file__, os.path.pardir))]
|
||||
tensorflow_library_dirs = [tf.sysconfig.get_lib()]
|
||||
|
||||
include_dirs = triton_include_dirs + tensorflow_include_dirs + cuda_include_dirs
|
||||
extra_compile_args = []
|
||||
extra_link_args = []
|
||||
library_dirs = tensorflow_library_dirs
|
||||
libraries = ['tensorflow_framework']
|
||||
library_dirs = triton_library_dirs + tensorflow_library_dirs
|
||||
libraries = ['tensorflow_framework', 'triton']
|
||||
|
||||
ext = setuptools.Extension(
|
||||
name = 'test',
|
||||
@@ -92,4 +95,46 @@ args = dict(
|
||||
setuptools.setup(**args)
|
||||
library_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
module = tf.load_op_library(os.path.join(library_dir, 'build/lib.linux-x86_64-3.6/test.cpython-36m-x86_64-linux-gnu.so'))
|
||||
print(module.matmul)
|
||||
|
||||
class dot:
|
||||
|
||||
def __init__(self):
|
||||
trans_a = True
|
||||
trans_b = False
|
||||
|
||||
def __call__(self, a, b):
|
||||
shape_a = tf.shape(a)
|
||||
shape_b = tf.shape(b)
|
||||
M = shape_a[0]
|
||||
K = shape_a[1]
|
||||
N = shape_b[0]
|
||||
lda = M
|
||||
ldb = K
|
||||
ldc = M
|
||||
c = extra_ops.alloc_empty(tf.stack([M, N]))
|
||||
return module.matmul(a, b, c, M, N, K, lda, ldb, ldc)
|
||||
|
||||
dot_nt = dot()
|
||||
def run_dot():
|
||||
M, N, K = 128, 128, 128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
# c = tf.matmul(a, b, transpose_a=True)
|
||||
c = dot_nt(a, b)
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
# Test
|
||||
hresult = np.dot(ha.T, hb).T
|
||||
dif = np.abs(result - hresult)
|
||||
np.savetxt('dif.dat', dif, '%2.4f')
|
||||
print(hresult)
|
||||
print(result)
|
||||
print("dif: %f" % np.max(dif))
|
||||
|
||||
run_dot()
|
Reference in New Issue
Block a user