Replaced cxfreeze with pyinstaller. Works better.

This commit is contained in:
Philippe Tillet
2014-10-16 17:49:17 -04:00
parent e0f0400a55
commit 11c283590f
4 changed files with 58 additions and 95 deletions

View File

@@ -1,13 +1,18 @@
set(SETUP_PY_IN "${CMAKE_CURRENT_SOURCE_DIR}/setup.py")
set(SETUP_PY "${CMAKE_CURRENT_BINARY_DIR}/setup.py")
find_program(PYINSTALLER pyinstaller)
if(PYINSTALLER)
set(SPEC_IN "${CMAKE_CURRENT_SOURCE_DIR}/pyinstaller_build.spec")
set(SPEC "${CMAKE_CURRENT_BINARY_DIR}/pyinstaller_build.spec")
set(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/build/timestamp")
file(GLOB DEPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "${CMAKE_CURRENT_SOURCE_DIR}/pysrc/*.py")
LIST(APPEND DEPS "${CMAKE_CURRENT_SOURCE_DIR}/setup.py")
LIST(APPEND DEPS "${CMAKE_CURRENT_SOURCE_DIR}/pyinstaller_build.spec")
configure_file(${SETUP_PY_IN} ${SETUP_PY})
configure_file(${SPEC_IN} ${SPEC})
add_custom_command(OUTPUT ${OUTPUT}
COMMAND ${PYTHON} ${SETUP_PY} build
COMMAND ${PYINSTALLER} ${SPEC_IN} ${CMAKE_CURRENT_SOURCE_DIR}
COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT}
DEPENDS ${DEPS})
DEPENDS ${DEPS} pyatidlas)
add_custom_target(autotune ALL DEPENDS ${OUTPUT})
install(CODE "execute_process(COMMAND ${PYTHON} ${SETUP_PY} install)")
endif()

View File

@@ -0,0 +1,34 @@
#!/usr/bin/env
import os, sys
prefix = sys.argv[2]
sys.path.append('/home/philippe/Development/ATIDLAS/build/python/pyatidlas/build/lib.linux-x86_64-2.7/')
sys.path.append('/home/philippe/Development/pyviennacl-dev/build/lib.linux-x86_64-2.7/')
sys.path.append(os.path.join(prefix, 'pysrc'))
a = Analysis([os.path.join(prefix, 'pysrc','autotune.py')],
hiddenimports=['scipy.sparse.csgraph._validation',
'scipy.special._ufuncs_cxx',
'scipy.sparse.linalg.dsolve.umfpack',
'scipy.integrate.vode',
'scipy.integrate.lsoda',
'sklearn.utils.sparsetools._graph_validation',
'sklearn.utils.sparsetools._graph_tools',
'sklearn.utils.lgamma'],
hookspath=None,
excludes=['scipy.io.matlab','matplotlib','PyQt4'],
runtime_hooks=None)
dict_tree = Tree(os.path.join(prefix, 'external', 'pyopencl-2014.1-py2.7.egg-info'), prefix = 'pyopencl-2014.1-py2.7.egg-info')
a.datas += dict_tree
pyz = PYZ(a.pure)
exe = EXE(pyz,
a.scripts,
a.binaries,
a.zipfiles,
a.datas,
name='autotune',
debug=False,
strip=None,
upx=True,
console=True )

View File

@@ -1,62 +1,19 @@
from sklearn import tree
from sklearn import ensemble
from numpy import array, bincount, mean, std, max, argmax, min, argmin, median
from scipy.stats import gmean
# def random_forest(Xtr, Ytr):
# clf = ensemble.RandomForestRegressor(10, max_depth=7).fit(Xtr,Ytr)
#
# def predict_tree(tree, x):
# tree_ = tree.tree_
# children_left = tree_.children_left
# children_right = tree_.children_right
# threshold = tree_.threshold
# feature = tree_.feature
# value = tree_.value
# idx = 0
# while children_left[idx]!=-1:
# if x[0, feature[idx]] <= threshold[idx]:
# idx = children_left[idx]
# else:
# idx = children_right[idx]
# return value[[idx],:,:][:,:,0]
#
# s = 0
# for e in clf.estimators_:
# tree_ = e.tree_
# children_left = tree_.children_left
# children_right = tree_.children_right
# threshold = tree_.threshold
# feature = tree_.feature
# value = tree_.value
# s = s + value.size + feature.size + threshold.size + children_right.size + children_left.size
# print s*4*1e-3
# return clf, clf.predict
#
# def train_nn(layer_sizes, XTr, YTr, XTe, YTe):
# optimizer = HF(open(os.devnull, 'w'), 15)
# optimizer.doCGBacktracking = True
# net = FeedforwardNeuralNet(layer_sizes, [Act.Tanh() for i in range(len(layer_sizes)-2)], Act.Linear(), 1e-5)
#
# nbatch=10
# bsize = XTr.shape[0]/nbatch
# data = ((XTr[(i%nbatch)*bsize:(i%nbatch+1)*bsize,:], YTr[(i%nbatch)*bsize:(i%nbatch+1)*bsize,:]) for i in range(nbatch))
# data = HFDataSource(data, bsize, gradBatchSize = nbatch*bsize, curvatureBatchSize = bsize, lineSearchBatchSize =nbatch*bsize, gradBatchIsTrainingSet=True)
# iters = optimizer.optimize(HFModel(net), data, 300, otherPrecondDampingTerm=net.L2Cost)
# bestte = collections.deque([float("inf")]*5, maxlen=5)
# for i,w in enumerate(iters):
# Diffte = YTe - net.predictions(XTe).as_numpy_array()
# Difftr = YTr - net.predictions(XTr).as_numpy_array()
# Ete = np.sum(Diffte**2)
# Etr = np.sum(Difftr**2)
# bestte.append(min(min(bestte),Ete))
# if min(bestte)==max(bestte):
# print 'Final test error: ', Ete
# return net, net.predictions
# print 'Iteration %d | Test error = %.2f | Train error = %.2f'%(i, Ete, Etr)
# return net, net.predictions
def gmean(a, axis=0, dtype=None):
if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it
log_a = np.log(np.array(a, dtype=dtype))
elif dtype: # Must change the default dtype allowing array type
if isinstance(a,np.ma.MaskedArray):
log_a = np.log(np.ma.asarray(a, dtype=dtype))
else:
log_a = np.log(np.asarray(a, dtype=dtype))
else:
log_a = np.log(a)
return np.exp(log_a.mean(axis=axis))
def train_model(X, Y, profiles, metric):
print("Building the model...")

View File

@@ -1,33 +0,0 @@
import os
import sys
from setuptools import Extension, setup
from cx_Freeze import setup, Executable
def main():
sys.path.append('/home/philippe/Development/ATIDLAS/build/python/pyatidlas/build/lib.linux-x86_64-2.7/')
sys.path.append('/home/philippe/Development/pyviennacl-dev/build/lib.linux-x86_64-2.7/')
sys.path.append(os.path.join('${CMAKE_CURRENT_SOURCE_DIR}','pysrc'))
extdir = os.path.join('${CMAKE_CURRENT_SOURCE_DIR}','external')
buildOptions = dict(packages = ['scipy.sparse.csgraph._validation',
'scipy.special._ufuncs_cxx',
'scipy.sparse.linalg.dsolve.umfpack',
'scipy.integrate.vode',
'scipy.integrate.lsoda',
'sklearn.utils.sparsetools._graph_validation',
'sklearn.utils.lgamma'],
excludes = ['matplotlib'],
bin_path_includes = ['/usr/lib/x86_64-linux-gnu/'],
include_files = [(os.path.abspath(os.path.join(extdir, x)), x) for x in os.listdir(extdir)])
base = 'Console'
executables = [
Executable(os.path.join('${CMAKE_CURRENT_SOURCE_DIR}','pysrc','autotune.py'), base=base)
]
setup(name='atidlas-tune',
version = '1.0',
description = 'Auto-tuner for ATIDLAS',
options = dict(build_exe = buildOptions),
executables = executables)
if __name__ == "__main__":
main()