[DOC] Basic Sphynx skeleton
This commit is contained in:
committed by
Philippe Tillet
parent
d22cf4f717
commit
12a621bb2f
243
docs/tutorials/pytriton.md
Normal file
243
docs/tutorials/pytriton.md
Normal file
@@ -0,0 +1,243 @@
|
||||
# The PyTriton API
|
||||
|
||||
|
||||
## <span style="color:darkred"> Table of Contents </span>
|
||||
|
||||
1. [Motivations](#motivations)
|
||||
2. [Triton Functions](#pytriton-function)
|
||||
1. [Creation of Triton Kernels](#creation-triton-kernels)
|
||||
2. [Usage of Triton Kernels](#usage-triton-kernels)
|
||||
3. [Integration with Automatic Differentiation](#autodiff)
|
||||
1. [Basics](#autodiff-basics)
|
||||
2. [Convenience](#autodiff-convenience)
|
||||
|
||||
|
||||
## <span style="color:darkred"> Motivations </span> <a name="motivations"></a>
|
||||
|
||||
|
||||
The purpose of PyTriton is to provide an API for easily executing Triton-C kernels from PyTorch and Tensorflow. One of the main advantages of PyTriton is that it is framework agnostic: any custom op written using this API will be transparently compatible with both Tensorflow and PyTorch without any additional effort required, as will be shown in this tutorial.
|
||||
|
||||
Consider for example the following piece of code:
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import triton
|
||||
|
||||
def run_tf():
|
||||
M, N, K = 128, 128, 128
|
||||
a = tf.placeholder(tf.float32, shape=[M, K])
|
||||
b = tf.placeholder(tf.float32, shape=[N, K])
|
||||
c = triton.ops.dot(a, b, transpose_a = False, transpose_b = True)
|
||||
da, db = tf.gradients(c, [a, b])
|
||||
# Run
|
||||
ha = np.random.rand(M, K).astype(np.float32)
|
||||
hb = np.random.rand(K, N).astype(np.float32)
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([da], feed_dict = {a: ha, b: hb})
|
||||
|
||||
def run_torch():
|
||||
M, N, K = 128, 128, 128
|
||||
a = torch.randn(M, K).cuda()
|
||||
b = torch.randn(K, N).cuda()
|
||||
a.requires_grad_(True)
|
||||
b.requires_grad_(True)
|
||||
c = triton.ops.dot(a, b, False, True)
|
||||
c.backward()
|
||||
da = a.grad.clone()
|
||||
db = b.grad.clone()
|
||||
|
||||
## Run on tensorflow
|
||||
# import tensorflow as tf
|
||||
# run_tf()
|
||||
|
||||
## Run on pytorch
|
||||
# import torch
|
||||
# run_torch()
|
||||
```
|
||||
|
||||
PyTriton works by detecting which frameworks are imported and automatically generating and just-in-time compiling C++ binding code for them. Specifically, the following chain of events is triggered when a Triton operation is executed:
|
||||
|
||||
1. The imported frameworks are detected
|
||||
2. C++ binding code for Tensorflow or PyTorch is generated, compiled and cached.
|
||||
3. The corresponding custom-op is automatically loaded from the generated .so file, and a framework-agnostic wrapper is created.
|
||||
4. The wrapper is called and a tf.tensor or a torch.tensor is returned. In the case of Tensorflow, the gradient is also registered at this point if applicable
|
||||
|
||||
|
||||
The remainder of this tutorial will show you how to re-implement the above `triton.ops.dot` operation from scratch.
|
||||
|
||||
## <span style="color:darkred"> PyTriton Functions </span> <a name="pytriton-function"></a>
|
||||
|
||||
The PyTriton API provides a `triton.function` class which automatically handles the interaction with automatic differentiation in whichever framework was detected. Therefore, every differentiable custom operation written with PyTriton should inherit from this class
|
||||
|
||||
```python
|
||||
import triton
|
||||
|
||||
# Entry point
|
||||
class _dot(triton.function):
|
||||
|
||||
@staticmethod
|
||||
# Forward Pass
|
||||
def forward(ctx, *args):
|
||||
#...
|
||||
|
||||
@staticmethod
|
||||
# Backward Pass
|
||||
def backward(ctx, dy):
|
||||
#...
|
||||
```
|
||||
|
||||
### <span style="color:darkblue">Creation of Triton Kernels </span> <a name="creation-triton-kernel"></a>
|
||||
|
||||
|
||||
PyTriton also provides a `triton.kernel` class which automatically takes care of interaction with the Triton-JIT as well as the generation and compilation of C++ framework bindings code. For our dot operation we create a kernel from the Triton-C code derived at the end of the [previous tutorial](https://github.com/ptillet/triton/blob/master/docs/triton-c.md)
|
||||
|
||||
```
|
||||
src = """
|
||||
__global__ void dot(TYPE * A, TYPE * B, TYPE * C,
|
||||
int M, int N, int K,
|
||||
int lda __multipleof(8), int ldb __multipleof(8), int ldc __multipleof(8)) {
|
||||
// prologue
|
||||
int pm = get_program_id(0);
|
||||
int pn = get_program_id(1);
|
||||
int rm[TM] = pm * TM + 0 ... TM;
|
||||
int rn[TN] = pn * TN + 0 ... TN;
|
||||
int rk[TK] = 0 ... TK;
|
||||
float c[TM, TN] = 0;
|
||||
// pointers to operands
|
||||
TYPE* pa[SHAPE_A] = A + rk[BROADCAST_AK] * STRIDE_AK + rm[BROADCAST_AM] * STRIDE_AM;
|
||||
TYPE* pb[SHAPE_B] = B + rk[BROADCAST_BK] * STRIDE_BK + rn[BROADCAST_BN] * STRIDE_BN;
|
||||
// prefetches operands
|
||||
TYPE a[SHAPE_A] = (*pa);
|
||||
TYPE b[SHAPE_B] = (*pb);
|
||||
// reduction loop
|
||||
for(int k = K; k > 0; k-= TK){
|
||||
c += USE_A @ USE_B;
|
||||
pa = pa + TK * STRIDE_AK;
|
||||
pb = pb + TK * STRIDE_BK;
|
||||
a = *pa;
|
||||
b = *pb;
|
||||
}
|
||||
// epilogue
|
||||
int rcm[TM] = pm * TM + 0 ... TM;
|
||||
int rcn[TN] = pn * TN + 0 ... TN;
|
||||
TYPE* pc[TM, TN] = C + rcn[newaxis, :] + rcm[:, newaxis] * ldc;
|
||||
*pc = c;
|
||||
}
|
||||
|
||||
}
|
||||
"""
|
||||
|
||||
kernel = triton.kernel(src, ['C'])
|
||||
```
|
||||
|
||||
Note that the second argument to `triton.kernel` constructors indicates which of the operands our kernel function should return. Here, we only return `C`.
|
||||
|
||||
At this point, `kernel` is a callable object which takes the same signature as the `dot` function in our source code, except that pointers are treated as tensors:
|
||||
```
|
||||
[tensor, tensor, tensor, int, int, int, int, int, int]
|
||||
```
|
||||
|
||||
### <span style="color:darkblue">Usage of Triton Kernels </span> <a name="usage-triton-kernels"></a>
|
||||
|
||||
However, in practice only A, B are provided by the user, and all the other `int` arguments should be derived from these operands only. Hence, we create a helper function that extracts shapes from the `A` and `B` tensors, and then returns the results of a call to `kernel`:
|
||||
|
||||
```python
|
||||
@staticmethod
|
||||
def _call(a, b, transpose_a, transpose_b):
|
||||
# extract shapes
|
||||
shape_a = triton.shape(a)
|
||||
shape_b = triton.shape(b)
|
||||
M, Ka = shape_a[0], shape_a[1]
|
||||
Kb, N = shape_b[0], shape_b[1]
|
||||
# transpose shapes
|
||||
if transpose_a:
|
||||
M, Ka = Ka, M
|
||||
if transpose_b:
|
||||
Kb, N = N, Kb
|
||||
# contiguous dimensions
|
||||
lda = M if transpose_a else Ka
|
||||
ldb = Kb if transpose_b else N
|
||||
ldc = N
|
||||
# data-type
|
||||
dtype = a.dtype
|
||||
# allocate output
|
||||
c = triton.empty([M, N], dtype = dtype)
|
||||
# compute
|
||||
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))]
|
||||
# macros -- not necessary but makes kernel source-code simpler
|
||||
macros = {# handle A transposition
|
||||
'USE_A' : '^a' if transpose_a else 'a',
|
||||
'STRIDE_AK' : 'lda' if transpose_a else '1',
|
||||
'STRIDE_AM' : '1' if transpose_a else 'lda',
|
||||
'BROADCAST_AK': ':, newaxis' if transpose_a else 'newaxis, :',
|
||||
'BROADCAST_AM': 'newaxis, :' if transpose_a else ':, newaxis',
|
||||
'SHAPE_A' : 'TK, TM' if transpose_a else 'TM, TK',
|
||||
# handle B transposition
|
||||
'USE_B' : '^b' if transpose_b else 'b',
|
||||
'STRIDE_BK' : '1' if transpose_b else 'ldb',
|
||||
'STRIDE_BN' : 'ldb' if transpose_b else '1',
|
||||
'BROADCAST_BK': 'newaxis, :' if transpose_b else ':, newaxis',
|
||||
'BROADCAST_BN': ':, newaxis' if transpose_b else 'newaxis, :',
|
||||
'SHAPE_B' : 'TN, TK' if transpose_b else 'TK, TN'}
|
||||
return _dot.kernel(a, b, c, M, N, Ka, lda, ldb, ldc, grid,
|
||||
AT = transpose_a, BT = transpose_b, TYPE = dtype,
|
||||
TM = [32, 64, 128], TN = [32, 64, 128], TK = [8], **macros)
|
||||
|
||||
```
|
||||
|
||||
While this code should be mostly self-explanatory, there are a few of noteworthy things worth pointing out
|
||||
|
||||
- `triton.shape` provides a framework-agnostic way to retrieve the shape of a tensor
|
||||
|
||||
- `triton.empty` creates an empty tensor of the specified dimensions
|
||||
|
||||
- `grid` corresponds to the grid with which our Triton kernel will be launched. Because in our case this grid depends on parametric tile variables, it is supplied as a function of compilation options `opt`, whose compile-time definition can be retrieved using `opt.d(name)`. Here, `opt.d('TM')` and `opt.d('TN')` retrieve the first and second tile dimension our kernel was compiled with. We also provide a helper `triton.cdiv` for ceil divisions.
|
||||
|
||||
- `macros` provides a list of preprocessor definitions to compile the kernel with. Alternatively, these can also be supplied as named argument to the `_dot.kernel`. We recall that lists can be supplied to the preprocessor, in which case an auto-tuning procedure will be triggered. Here, the value of `TM` and `TN` are both tuned between 32, 64 and 128.
|
||||
|
||||
## <span style="color:darkred"> Compatibility with Automatic Differentiation</span> <a name="autodiff"></a>
|
||||
|
||||
At this point, our custom operation only takes two tensor arguments and transposition information, which is good. However, it is still not compatible with PyTorch's or TensorFlow's automatic differentiation engine, and a small amount of additional effort is needed.
|
||||
|
||||
### <span style="color:darkblue"> Basics </span> <a name="autodiff-basics"></a>
|
||||
|
||||
PyTriton binds to Tensorflow's and PyTorch's automatic differentiation framework using a single, common API inspired by PyTorch. It consists of two static methods `forward` and `backward` that take a context as their first input:
|
||||
|
||||
```
|
||||
@staticmethod
|
||||
def forward(ctx, a, b, transpose_a = False, transpose_b = False):
|
||||
ctx.save_for_backward(a, b)
|
||||
ctx.t_a = transpose_a
|
||||
ctx.t_b = transpose_b
|
||||
return _dot._call(a, b, transpose_a, transpose_b)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
a, b = ctx.saved_tensors
|
||||
t_a, t_b = ctx.t_a, ctx.t_b
|
||||
if not t_a and not t_b:
|
||||
da = _dot._call(dy, b, False, True)
|
||||
db = _dot._call(a, dy, True, False)
|
||||
elif not t_a and t_b:
|
||||
da = _dot._call(dy, b, False, False)
|
||||
db = _dot._call(dy, a, True, False)
|
||||
elif t_a and not t_b:
|
||||
da = _dot._call(b, dy, False, True)
|
||||
db = _dot._call(a, dy, False, False)
|
||||
elif t_a and t_b:
|
||||
da = _dot._call(b, dy, True, True)
|
||||
db = _dot._call(dy, a, True, True)
|
||||
else:
|
||||
assert False
|
||||
return da, db, None, None, None, None, None, None, None
|
||||
```
|
||||
|
||||
### <span style="color:darkblue">Convenience </span> <a name="autodiff-convenience"></a>
|
||||
|
||||
Still like for PyTorch, a callable operation can be created using the `apply` method of our `triton.function` class. We wrap it as a module variable for convenience:
|
||||
|
||||
```python
|
||||
dot = _dot.apply
|
||||
```
|
||||
And that's it! Our custom op is now created and ready to be used with both PyTorch and Tensorflow.
|
Reference in New Issue
Block a user