[OPTIMIZER] Fix the load-mask issue with the pipeline pass (#857)

This commit is contained in:
Da Yan
2022-11-09 01:29:53 +08:00
committed by GitHub
parent 976cf12af1
commit 137344946f
2 changed files with 41 additions and 40 deletions

View File

@@ -15,6 +15,14 @@ using namespace mlir;
#define GEN_PASS_CLASSES
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
static Type getI1SameShape(Value v) {
Type vType = v.getType();
auto i1Type = IntegerType::get(vType.getContext(), 1);
auto tensorType = vType.cast<RankedTensorType>();
return RankedTensorType::get(tensorType.getShape(), i1Type,
tensorType.getEncoding());
}
namespace {
class LoopPipeliner {
/// cache forOp we are working on
@@ -262,13 +270,23 @@ void LoopPipeliner::emitPrologue() {
loadStageBuffer[op->getResult(0)] = {loadsBuffer[op->getResult(0)]};
}
// load => copy async
// TODO: check if the hardware supports async copy
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(op)) {
Value mask = lookupOrDefault(loadOp.mask(), stage);
Value newMask;
if (mask) {
Value splatCond = builder.create<triton::SplatOp>(
mask.getLoc(), mask.getType(), loopCond);
newMask =
builder.create<arith::AndIOp>(mask.getLoc(), mask, splatCond);
} else {
newMask = builder.create<triton::SplatOp>(
loopCond.getLoc(), getI1SameShape(loadOp), loopCond);
}
// TODO: check if the hardware supports async copy
newOp = builder.create<triton::gpu::InsertSliceAsyncOp>(
op->getLoc(), loadsBuffer[loadOp].getType(),
lookupOrDefault(loadOp.ptr(), stage),
loadStageBuffer[loadOp][stage], pipelineIterIdx,
lookupOrDefault(loadOp.mask(), stage),
loadStageBuffer[loadOp][stage], pipelineIterIdx, newMask,
lookupOrDefault(loadOp.other(), stage), loadOp.cache(),
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
loadStageBuffer[loadOp].push_back(newOp->getResult(0));
@@ -287,33 +305,6 @@ void LoopPipeliner::emitPrologue() {
}
}
// If this is a load/async_copy, we need to update the mask
if (Value mask = [&]() {
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(newOp)) {
return loadOp.mask();
} else if (auto insertSliceAsyncOp =
llvm::dyn_cast<triton::gpu::InsertSliceAsyncOp>(
newOp)) {
return insertSliceAsyncOp.mask();
} else {
return mlir::Value();
}
}()) {
// assert(I1 or TensorOf<[I1]>);
OpBuilder::InsertionGuard g(builder);
// TODO: move this out of the loop
builder.setInsertionPoint(newOp);
Value splatCond = builder.create<triton::SplatOp>(
mask.getLoc(), mask.getType(), loopCond);
Value newMask =
builder.create<arith::AndIOp>(mask.getLoc(), mask, splatCond);
// TODO: better way to do this?
if (llvm::isa<triton::LoadOp>(newOp))
newOp->setOperand(1, newMask);
else // InsertSliceAsyncOp
newOp->setOperand(3, newMask);
}
// update mapping of results
for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) {
Value originalResult = op->getResult(dstIdx);
@@ -332,7 +323,7 @@ void LoopPipeliner::emitPrologue() {
newOp->getResult(dstIdx), stage + 1);
}
}
}
} // for (Operation *op : orderedDeps)
pipelineIterIdx = builder.create<arith::AddIOp>(
iv.getLoc(), pipelineIterIdx,
@@ -490,26 +481,29 @@ scf::ForOp LoopPipeliner::createNewForOp() {
for (Operation *op : orderedDeps) {
Operation *nextOp = nullptr;
// TODO(da): does this work if loadOp has no mask?
// update loading mask
if (loads.contains(op->getResult(0))) {
auto loadOp = llvm::cast<triton::LoadOp>(op);
Value mask = loadOp.mask();
Value newMask;
if (mask) {
Value splatCond = builder.create<triton::SplatOp>(
mask.getLoc(), mask.getType(), nextLoopCond);
Value newMask = builder.create<arith::AndIOp>(
newMask = builder.create<arith::AndIOp>(
mask.getLoc(), splatCond, nextMapping.lookupOrDefault(mask));
// if mask is defined outside the loop, don't update the map more than
// once
if (!(forOp.isDefinedOutsideOfLoop(mask) && nextMapping.contains(mask)))
nextMapping.map(mask, newMask);
}
newMask = nextMapping.lookupOrDefault(loadOp.mask());
} else
newMask = builder.create<triton::SplatOp>(
loadOp.getLoc(), getI1SameShape(loadOp), nextLoopCond);
Value insertAsyncOp = builder.create<triton::gpu::InsertSliceAsyncOp>(
op->getLoc(), loadsBuffer[loadOp].getType(),
nextMapping.lookupOrDefault(loadOp.ptr()),
newForOp.getRegionIterArgs()[bufferIdx + nextBuffers.size()],
insertSliceIndex, nextMapping.lookupOrDefault(loadOp.mask()),
insertSliceIndex, newMask,
nextMapping.lookupOrDefault(loadOp.other()), loadOp.cache(),
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
nextBuffers.push_back(insertAsyncOp);

View File

@@ -13,12 +13,19 @@
// CHECK-DAG: %[[CONSTANT_1:.*]] = arith.constant 1 : i32
// CHECK-DAG: %[[CONSTANT_2:.*]] = arith.constant 2 : i32
// CHECK-DAG: %[[CONSTANT_3:.*]] = arith.constant 3 : i32
// CHECK-DAG: %[[LOOP_COND_0:.*]] = arith.cmpi slt, %[[LB:.*]], %[[UB:.*]]
// CHECK: %[[ABUFFER:.*]] = triton_gpu.alloc_tensor
// CHECK: %[[A0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]]
// CHECK-DAG: %[[LOOP_COND_0_SPLAT_A:.*]] = tt.splat %[[LOOP_COND_0]]
// CHECK: %[[A0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]], %[[LOOP_COND_0_SPLAT_A]]
// CHECK: %[[BBUFFER:.*]] = triton_gpu.alloc_tensor
// CHECK: %[[B0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]]
// CHECK: %[[A1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]]
// CHECK: %[[B1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]]
// CHECK-DAG: %[[LOOP_COND_0_SPLAT_B:.*]] = tt.splat %[[LOOP_COND_0]]
// CHECK: %[[B0BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_0]], %[[LOOP_COND_0_SPLAT_B]]
// CHECK-DAG: %[[IV_1:.*]] = arith.addi %[[LB]], %[[STEP:.*]]
// CHECK-DAG: %[[LOOP_COND_1:.*]] = arith.cmpi slt, %[[IV_1]], %[[UB]]
// CHECK-DAG: %[[LOOP_COND_1_SPLAT_A:.*]] = tt.splat %[[LOOP_COND_1]]
// CHECK: %[[A1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]], %[[LOOP_COND_1_SPLAT_A]]
// CHECK-DAG: %[[LOOP_COND_1_SPLAT_B:.*]] = tt.splat %[[LOOP_COND_1]]
// CHECK: %[[B1BUFFER:.*]] = triton_gpu.insert_slice_async {{.*}}, {{.*}}, %[[CONSTANT_1]], %[[LOOP_COND_1_SPLAT_B]]
// CHECK: triton_gpu.async_wait {num = 2 : i32}
// CHECK: %[[A0:.*]] = tensor.extract_slice %[[A1BUFFER]][0, 0, 0]
// CHECK: %[[B0:.*]] = tensor.extract_slice %[[B1BUFFER]][0, 0, 0]
@@ -49,7 +56,7 @@ func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B
%b_off = arith.constant dense<4> : tensor<32x128xi32, #BL>
scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>) {
%a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
%a_ = tt.load %a_ptr {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL>
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B>