[LANG] Add fp16 to fp8 conversion (#444)

This commit is contained in:
TC
2022-02-02 20:42:09 -08:00
committed by GitHub
parent 3b20170fa3
commit 137bb67fad
2 changed files with 148 additions and 15 deletions

View File

@@ -414,13 +414,13 @@ void generator::visit_fcmp_inst(ir::fcmp_inst* x) {
std::tuple<Value*, Value*, Value*, Value*> generator::fp32x4_to_fp8x4(Value *in0, Value *in1, Value *in2, Value *in3){
auto cvt = [this](Value *v){
if(ConstantFP* ci = dyn_cast<ConstantFP>(v))
if(ci->getValue().convertToFloat() == 0)
return builder_->getInt8(0);
throw std::runtime_error("unsupported cast");
};
return std::make_tuple(cvt(in0), cvt(in1), cvt(in2), cvt(in3));
in0 = cast(llvm::Instruction::FPTrunc, in0, f16_ty);
in1 = cast(llvm::Instruction::FPTrunc, in1, f16_ty);
in2 = cast(llvm::Instruction::FPTrunc, in2, f16_ty);
in3 = cast(llvm::Instruction::FPTrunc, in3, f16_ty);
Value *ret0, *ret1, *ret2, *ret3;
std::tie(ret0, ret1, ret2, ret3) = fp16x4_to_fp8x4(in0, in1, in2, in3);
return std::make_tuple(ret0, ret1, ret2, ret3);
}
std::tuple<Value*, Value*, Value*, Value*> generator::fp8x4_to_fp32x4(Value *in0, Value *in1, Value *in2, Value *in3){
@@ -439,14 +439,14 @@ std::tuple<Value*, Value*, Value*, Value*> generator::fp8x4_to_fp16x4(Value *in0
InlineAsm *ptx = InlineAsm::get(FunctionType::get(ret_ty, {i32_ty}, false),
"{"
".reg .b32 a<2>, b<2>; \n\t"
"prmt.b32 a0, 0, $2, 0x5140; \n\t"
"prmt.b32 a1, 0, $2, 0x7362; \n\t"
"lop3.b32 b0, a0, 0x7fff7fff, 0, 0xc0; \n\t" // strip sign
"lop3.b32 b1, a1, 0x7fff7fff, 0, 0xc0; \n\t"
"shr.b32 b0, b0, 1; \n\t" // shift into fp16 poistion
"shr.b32 b1, b1, 1; \n\t"
"lop3.b32 $0, b0, 0x80008000, a0, 0xf8; \n\t" // restore sign
"lop3.b32 $1, b1, 0x80008000, a1, 0xf8; \n\t"
"prmt.b32 a0, 0, $2, 0x5040; \n\t" // If input is 0xdcba set a0 to 0xb0a0
"prmt.b32 a1, 0, $2, 0x7060; \n\t" // If input is 0xdcba set a1 to 0xd0c0
"lop3.b32 b0, a0, 0x7fff7fff, 0, 0xc0; \n\t" // b0 = a0 & 0x7fff7fff (strip sign)
"lop3.b32 b1, a1, 0x7fff7fff, 0, 0xc0; \n\t" // b1 = a1 & 0x7fff7fff (strip sign)
"shr.b32 b0, b0, 1; \n\t" // b0 <<= 1 (shift into fp16 poistion)
"shr.b32 b1, b1, 1; \n\t" // b1 <<= 1 (shift into fp16 position)
"lop3.b32 $0, b0, 0x80008000, a0, 0xf8; \n\t" // out0 = b0 | (0x80008000 | a0) (restore sign)
"lop3.b32 $1, b1, 0x80008000, a1, 0xf8; \n\t" // out1 = b1 | (0x80008000 | a1) (restore sign)
"}", "=r,=r,r", false);
Value *packed_in = UndefValue::get(vec_ty(i8_ty, 4));
packed_in = insert_elt(packed_in, in0, (uint64_t)0);
@@ -464,6 +464,51 @@ std::tuple<Value*, Value*, Value*, Value*> generator::fp8x4_to_fp16x4(Value *in0
return std::make_tuple(ret0, ret1, ret2, ret3);
}
std::tuple<Value*, Value*, Value*, Value*> generator::fp16x4_to_fp8x4(Value *in0, Value *in1, Value *in2, Value *in3) {
/* fp16 bit representation is seeeeemmmmmmmmmm (s=sign, e=exponent, m=mantissa)
* fp8 bit representation is seeeemmm
* The 4 fp8 exponent bits are the low order 4 exponent bits in fp16.
* The 3 fp8 mantissa bits are the high order 3 mantissa bits in fp16.
* Note that the low order exponent bits and high order mantissa bits in fp16 are contiguous.
* We want to round to nearest fp8 value. To do that add 1 to 4th mantissa bit in fp16 (that's
* one more than the number of mantissa bits in fp8).
* fp8 = (fp16 & 0x8000) | (((f16 << 1) + 0x0080) & 0x7fff)
*
* We compute two fp16s in one uint32. The addition could cause bit flips from one fp16 to the
* other. To avoid this we zero out the most significant exponent bit. If that bit is set then
* the value isn't representable in float8 anyway so we assume it's never set (and give garbage
* output if it is). If we were willing to assume the most significant exponent was never set
* we could save the first two lop3.b32 instructions below.
*/
InlineAsm *ptx = InlineAsm::get(FunctionType::get({vec_ty(i8_ty, 4)}, {i32_ty, i32_ty}, false),
"{"
".reg .b32 a<2>, b<2>; \n\t"
"shl.b32 a0, $1, 1; \n\t" // a0 = input0 << 1
"shl.b32 a1, $2, 1; \n\t" // a1 = input1 << 1
"lop3.b32 a0, a0, 0x7fff7fff, 0, 0xc0; \n\t" // a0 = (a0 & 0x7fff7fff)
"lop3.b32 a1, a1, 0x7fff7fff, 0, 0xc0; \n\t" // a1 = (a1 & 0x7fff7fff)
"add.u32 a0, a0, 0x00800080; \n\t" // a0 += 0x00800080
"add.u32 a1, a1, 0x00800080; \n\t" // a1 += 0x00800080
"lop3.b32 b0, $1, 0x80008000, a0, 0xea; \n\t" // b0 = (input0 & 0x80008000) | a0
"lop3.b32 b1, $2, 0x80008000, a1, 0xea; \n\t" // b1 = (input1 & 0x80008000) | a1
"prmt.b32 $0, b0, b1, 0x7531; \n\t" // If b0 = 0xabcd and b1=0x0123 sets output to 0xac02
"}", "=r,r,r", false);
Value *packed_in0 = UndefValue::get(vec_ty(f16_ty, 2));
Value *packed_in1 = UndefValue::get(vec_ty(f16_ty, 2));
packed_in0 = insert_elt(packed_in0, in0, (int)0);
packed_in0 = insert_elt(packed_in0, in1, (int)1);
packed_in1 = insert_elt(packed_in1, in2, (int)0);
packed_in1 = insert_elt(packed_in1, in3, (int)1);
Value *in_arg0 = bit_cast(packed_in0, i32_ty);
Value *in_arg1 = bit_cast(packed_in1, i32_ty);
Value *ret = call(ptx, {in_arg0, in_arg1});
Value *ret0 = extract_elt(ret, (int)0);
Value *ret1 = extract_elt(ret, (int)1);
Value *ret2 = extract_elt(ret, (int)2);
Value *ret3 = extract_elt(ret, (int)3);
return std::make_tuple(ret0, ret1, ret2, ret3);
}
Value* generator::bf16_to_fp32(Value *in0){
if (tgt_->as_nvidia()->sm() >= 80) {
InlineAsm *ptx = InlineAsm::get(FunctionType::get(f32_ty, {bf16_ty}, false),
@@ -508,8 +553,12 @@ void generator::visit_cast_inst(ir::cast_inst* x) {
auto cvt = [&](Value* a, Value* b, Value* c, Value* d){
if(op_sca_ty->is_fp32_ty() && ret_sca_ty->is_fp8_ty())
return fp32x4_to_fp8x4(a, b, c, d);
if(op_sca_ty->is_fp16_ty() && ret_sca_ty->is_fp8_ty())
return fp16x4_to_fp8x4(a, b, c, d);
if(op_sca_ty->is_fp8_ty() && ret_sca_ty->is_fp16_ty())
return fp8x4_to_fp16x4(a, b, c, d);
if(op_sca_ty->is_fp8_ty() && ret_sca_ty->is_fp32_ty())
return fp8x4_to_fp32x4(a, b, c, d);
throw std::runtime_error("unsupported conversion");
};
for(size_t i = 0; i < x_idxs.size(); i+=4){

View File

@@ -565,6 +565,90 @@ def test_cast(dtype_x, dtype_z, bitcast, device='cuda'):
z_ref = x.astype(getattr(np, dtype_z))
assert to_numpy(z_tri) == z_ref
def test_f8_f16_roundtrip():
"""Tests that converting an f8 to f16 and back to f8 doesn't change its value"""
@triton.jit
def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
input = tl.load(input_ptr + offsets, mask=mask)
output = input
tl.store(output_ptr + offsets, output, mask=mask)
f8_tensor = torch.tensor(range(-128, 128), dtype=torch.int8, device='cuda')
f8 = triton.reinterpret(f8_tensor, tl.float8)
n_elements = f8_tensor.numel()
f16 = torch.empty_like(f8_tensor, dtype=torch.float16)
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
copy_kernel[grid](f8, f16, n_elements, BLOCK_SIZE=1024)
f8_output_tensor = torch.empty_like(f16, dtype=torch.int8)
f8_output = triton.reinterpret(f8_output_tensor, tl.float8)
print(f16.dtype, f8_output.dtype)
copy_kernel[grid](f16, f8_output, n_elements, BLOCK_SIZE=1024)
assert torch.all(f8_tensor == f8_output_tensor)
def test_f16_to_f8_rounding():
"""Takes all float16s, converts them to float8 and back to float16. Checks that the absolute
error is the minimum over all float8.
Or the same explanation a bit mathier:
for all f16 |f16 - fromf8(tof8(f16))| == min over all f8 |f16 - fromf8(f8)|"""
@triton.jit
def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
input = tl.load(input_ptr + offsets, mask=mask)
output = input
tl.store(output_ptr + offsets, output, mask=mask)
# torch.view with a dtype isn't supported in triton's torch yet so use numpy's view
f16_input_np = (
np.array(
range(-int(2 ** (16 - 1)), int(2 ** (16 - 1))), dtype=np.int16,
)
.view(np.float16)
)
f16_input = torch.tensor(f16_input_np, dtype=torch.float16, device='cuda')
n_elements = f16_input.numel()
f8_output_tensor = torch.empty_like(f16_input, dtype=torch.int8)
f8_output = triton.reinterpret(f8_output_tensor, tl.float8)
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
copy_kernel[grid](f16_input, f8_output, n_elements, BLOCK_SIZE=1024)
f16_output = torch.empty_like(f16_input, dtype=torch.float16)
copy_kernel[grid](f8_output, f16_output, n_elements, BLOCK_SIZE=1024)
abs_error = torch.abs(f16_input - f16_output)
all_f8_vals_tensor = torch.tensor(range(2 ** 8), dtype=torch.uint8, device='cuda')
all_f8_vals = triton.reinterpret(all_f8_vals_tensor, tl.float8)
all_f8_vals_in_f16 = torch.empty_like(all_f8_vals_tensor, dtype=torch.float16)
copy_kernel[grid](all_f8_vals, all_f8_vals_in_f16, n_elements=256, BLOCK_SIZE=1024)
all_finite_f8_vals_in_f16 = all_f8_vals_in_f16[
torch.isfinite(all_f8_vals_in_f16)
]
min_error = torch.min(
torch.abs(
f16_input.reshape((-1, 1))
- all_finite_f8_vals_in_f16.reshape((1, -1))
),
dim=1,
)[0]
# 1.9375 is float8 max
mismatch = torch.logical_and(
abs_error != min_error, torch.logical_and(torch.isfinite(f16_input), torch.abs(f16_input) < 1.9375)
)
assert torch.all(
torch.logical_not(mismatch)
), f"{f16_input[mismatch]=} {f16_output[mismatch]=} {abs_error[mismatch]=} {min_error[mismatch]=}"
# ---------------
# test reduce
# ---------------