[python] refactoring in anticipation of pytorch support
This commit is contained in:
@@ -34,19 +34,19 @@ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
|
||||
/* pointers for A */
|
||||
#if AT == 1
|
||||
TYPE* pa[TK, TM] = A + rka[:, newaxis] + rxa[newaxis, :]*lda;
|
||||
TYPE* pa[TK, TM] = A + rka[:, newaxis]*lda + rxa[newaxis, :];
|
||||
TYPE a[TK, TM] = *pa;
|
||||
#else
|
||||
TYPE* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis];
|
||||
TYPE* pa[TM, TK] = A + rka[newaxis, :] + rxa[:, newaxis]*lda;
|
||||
TYPE a[TM, TK] = *pa;
|
||||
#endif
|
||||
|
||||
/* pointers for B */
|
||||
#if BT == 1
|
||||
TYPE* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis];
|
||||
TYPE* pb[TN, TK] = B + rkb[newaxis, :] + ryb[:, newaxis]*ldb;
|
||||
TYPE b[TN, TK] = *pb;
|
||||
#else
|
||||
TYPE* pb[TK, TN] = B + rkb[:, newaxis] + ryb[newaxis, :]*ldb;
|
||||
TYPE* pb[TK, TN] = B + rkb[:, newaxis]*ldb + ryb[newaxis, :];
|
||||
TYPE b[TK, TN] = *pb;
|
||||
#endif
|
||||
|
||||
@@ -54,14 +54,14 @@ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
for(int k = K; k > 0; k = k - TK){
|
||||
xc = USEA @ USEB + xc;
|
||||
#if AT == 1
|
||||
pa = pa + TK;
|
||||
#else
|
||||
pa = pa + TK*lda;
|
||||
#else
|
||||
pa = pa + TK;
|
||||
#endif
|
||||
#if BT == 1
|
||||
pb = pb + TK*ldb;
|
||||
#else
|
||||
pb = pb + TK;
|
||||
#else
|
||||
pb = pb + TK*ldb;
|
||||
#endif
|
||||
a = *pa;
|
||||
b = *pb;
|
||||
@@ -70,19 +70,19 @@ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
/* epilogue */
|
||||
int rxc[TM] = ridx * TM + (0 ... TM);
|
||||
int ryc[TN] = ridy * TN + (0 ... TN);
|
||||
TYPE* pc[TM, TN] = C + ryc[newaxis, :]*ldc + rxc[:, newaxis];
|
||||
TYPE* pc[TM, TN] = C + ryc[newaxis, :] + rxc[:, newaxis] * ldc;
|
||||
TYPE c[TM, TN] = xc;
|
||||
bool checkc0[TM] = rxc < M;
|
||||
bool checkc1[TN] = ryc < N;
|
||||
bool checkc[TM, TN] = checkc0[:, newaxis] && checkc1[newaxis, :];
|
||||
*pc = c;
|
||||
*?(checkc) pc = c;
|
||||
}
|
||||
"""
|
||||
|
||||
def cdiv(a, b):
|
||||
return -(-a // b)
|
||||
|
||||
class dot:
|
||||
class dot_op:
|
||||
|
||||
def __init__(self, trans_a = False, trans_b = False):
|
||||
self.dot = triton.op(src, ['C'])
|
||||
@@ -93,10 +93,18 @@ class dot:
|
||||
shape_a = triton.shape(a)
|
||||
shape_b = triton.shape(b)
|
||||
M = shape_a[0]
|
||||
K = shape_a[1]
|
||||
N = shape_b[0]
|
||||
lda = M
|
||||
ldb = K
|
||||
Ka = shape_a[1]
|
||||
Kb = shape_b[0]
|
||||
N = shape_b[1]
|
||||
# transpose shapes
|
||||
if self.trans_a:
|
||||
M, Ka = Ka, M
|
||||
if self.trans_b:
|
||||
Kb, N = N, Kb
|
||||
K = Ka
|
||||
# contiguous dimensions
|
||||
lda = Ka
|
||||
ldb = N
|
||||
ldc = N
|
||||
c = triton.empty([M, N])
|
||||
return self.dot(a, b, c, M, N, K, lda, ldb, ldc,
|
||||
@@ -104,34 +112,34 @@ class dot:
|
||||
AT = self.trans_a, BT = self.trans_b, TYPE = tf.float16,
|
||||
TM = [128], TN = [ 128], TK = [32])
|
||||
|
||||
dot_nt = dot(False, True)
|
||||
dot_nn = dot(False, False)
|
||||
dot_tn = dot(True, False)
|
||||
dot_tt = dot(True, True)
|
||||
dot_nt = dot_op(False, True)
|
||||
dot_nn = dot_op(False, False)
|
||||
dot_tn = dot_op(True, False)
|
||||
dot_tt = dot_op(True, True)
|
||||
|
||||
@triton.register_gradient(dot)
|
||||
def _dot_grad(op, dy):
|
||||
a = op.inputs[0]
|
||||
b = op.inputs[1]
|
||||
return [dot_tn(dy, b), dot_nt(a, dy), None, None, None, None, None, None, None]
|
||||
# @triton.register_gradient(dot_op)
|
||||
# def _dot_grad(op, dy):
|
||||
# a = op.inputs[0]
|
||||
# b = op.inputs[1]
|
||||
# return [dot_tn(dy, b), dot_nt(a, dy), None, None, None, None, None, None, None]
|
||||
|
||||
def run_dot():
|
||||
M, N, K = 128, 128, 128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
# c = tf.matmul(a, b, transpose_a=True)
|
||||
c = dot_nn(a, b)
|
||||
grads = tf.gradients(c, [a])
|
||||
c = dot_nt(a, b)
|
||||
# grads = tf.gradients(c, [a])
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(N, K).astype(np.float16)
|
||||
hb = np.random.rand(K, N).astype(np.float16)
|
||||
# Run
|
||||
sess = tf.InteractiveSession()
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([grads], feed_dict = {a: ha,
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
# Test
|
||||
hresult = np.dot(ha.T, hb.T).T
|
||||
hresult = np.dot(ha, hb.T)
|
||||
dif = np.abs(result - hresult)
|
||||
np.savetxt('dif.dat', dif, '%2.4f')
|
||||
print(hresult)
|
||||
|
Reference in New Issue
Block a user