[Triton-MLIR][BACKEND] insert_slice_async on GPUs < sm80 (#908)
`insert_slice_async` is decomposed into `load + insert_slice` in the backend. Not sure if V100 perf can match the master branch though in this way. Maybe the performance can be improved if instructions are arranged in the following form: ``` %0 = load %1 = load %2 = load ... insert_slice %0 insert_slice %1 insert_slice %2 ``` Tested on A100 when manually enabling this decomposition. Tests on V100 haven't been integrated yet, we can divide the tests into two phases: 1. Test only load, insert_slice, and insert_slice_async, given TritonGPU IRs in `test_backend.py`. 2. End to end gemm tests on V100.
This commit is contained in:
@@ -1107,7 +1107,8 @@ void init_triton_ir(py::module &&m) {
|
||||
mlir::Value &mask) -> mlir::Value {
|
||||
auto loc = self.getUnknownLoc();
|
||||
mlir::Type dstType;
|
||||
if (auto srcTensorType = ptr.getType().dyn_cast<mlir::RankedTensorType>()) {
|
||||
if (auto srcTensorType =
|
||||
ptr.getType().dyn_cast<mlir::RankedTensorType>()) {
|
||||
mlir::Type dstElemType = srcTensorType.getElementType()
|
||||
.cast<mlir::triton::PointerType>()
|
||||
.getPointeeType();
|
||||
@@ -1315,8 +1316,8 @@ void init_triton_translation(py::module &m) {
|
||||
"translate_triton_gpu_to_llvmir",
|
||||
[](mlir::ModuleOp op, int computeCapability) {
|
||||
llvm::LLVMContext llvmContext;
|
||||
auto llvmModule =
|
||||
::mlir::triton::translateTritonGPUToLLVMIR(&llvmContext, op);
|
||||
auto llvmModule = ::mlir::triton::translateTritonGPUToLLVMIR(
|
||||
&llvmContext, op, computeCapability);
|
||||
if (!llvmModule)
|
||||
llvm::report_fatal_error("Failed to translate TritonGPU to LLVM IR.");
|
||||
|
||||
|
Reference in New Issue
Block a user