[Analysis/Allocation] Allocation passes now assumes that slices always alias (#108)

This code in this branch assumes the `src` operand in
`insert_slice_async` always aliases the result, which shouldn't hold for
generally cases but is just a workaround to make the pipeline pass work.

I'm also working on the complete analysis in another
[branch](https://github.com/openai/triton-mlir/tree/keren/analyze-slice).
This commit is contained in:
Keren Zhou
2022-09-09 12:03:41 -07:00
committed by GitHub
parent 9bd5a3dcd2
commit 16aed94ff5
14 changed files with 299 additions and 195 deletions

View File

@@ -37,7 +37,9 @@ func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B
func @alloc(%A : !tt.ptr<f16>) {
// CHECK: %cst -> %cst
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x32xf16, #AL>
// CHECK: %0 -> %0
%cst2 = triton_gpu.alloc_tensor : tensor<16x16xf16, #A>
return
}
@@ -49,25 +51,28 @@ func @convert(%A : !tt.ptr<f16>) {
return
}
// CHECK-LABEL: copy_async
func @copy_async(%A : !tt.ptr<f16>, %i1 : i1) {
// CHECK-LABEL: insert_slice_async
func @insert_slice_async(%A : !tt.ptr<f16>, %i1 : i1) {
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<16x16x!tt.ptr<f16>, #AL>
%mask = tt.splat %i1 : (i1) -> tensor<16x16xi1, #AL>
%other = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #AL>
// CHECK: %2 -> %2
%a = triton_gpu.copy_async %a_ptr, %mask, %other {cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<16x16x!tt.ptr<f16>, #AL> -> tensor<16x16xf16, #A>
// CHECK: %cst_0 -> %cst_0
%tensor = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A>
%index = arith.constant 0 : i32
// CHECK: %2 -> %cst_0
%a = triton_gpu.insert_slice_async %a_ptr, %tensor, %index, %mask, %other {axis = 0 : i32, cache = 1 : i32, evict = 1 : i32, isOtherUnspecified = false, isVolatile = false} : tensor<16x16x!tt.ptr<f16>, #AL> -> tensor<1x16x16xf16, #A>
return
}
// COM: Enable the following test once we support view on shared memory tensors
// COM: // CHECK-LABEL: view
// COM: func @view(%A : !tt.ptr<f16>) {
// COM: // CHECK: res0:0 -> 0
// COM: %cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// COM: // CHECK-NEXT: res1:0 -> 0
// COM: %cst1 = tt.view %cst0 : (tensor<16x16xf16, #A>) -> tensor<32x8xf16, #A>
// COM: return
// COM: }
// CHECK-LABEL: extract_slice
func @extract_slice(%A : !tt.ptr<f16>) {
// CHECK: %cst -> %cst
%cst0 = arith.constant dense<0.000000e+00> : tensor<1x16x16xf16, #A>
%index = arith.constant 0 : i32
// CHECK-NEXT: %0 -> %cst
%cst1 = triton_gpu.extract_slice %cst0, %index { axis = 0 : i32 } : tensor<1x16x16xf16, #A> -> tensor<16x16xf16, #A>
return
}
// CHECK-LABEL: if_cat
func @if_cat(%i1 : i1) {
@@ -123,62 +128,31 @@ func @for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.p
return
}
// COM: // Enable the following test once we support view on shared memory tensors
// COM: // CHECK-LABEL: for_if
// COM: func @for_if(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {
// COM: // CHECK: res0:0 -> 0
// COM: %a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: // CHECK-NEXT: res1:0 -> 1
// COM: %b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: // CHECK-NEXT: res2:0 -> 2
// COM: %c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: // CHECK-NEXT: arg3:0 -> 0
// COM: // CHECK-NEXT: arg3:1 -> 1
// COM: // CHECK-NEXT: arg3:2 -> 2
// COM: // CHECK-NEXT: res3:0 -> 0,1
// COM: // CHECK-NEXT: res3:1 -> 0,1
// COM: // CHECK-NEXT: res3:2 -> 0,1
// COM: %a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>) {
// COM: scf.if %i1 {
// COM: // CHECK-NEXT: res5:0 -> 0,1
// COM: %cst0 = tt.view %a_shared : (tensor<128x32xf16, #A>) -> tensor<32x128xf16, #A>
// COM: scf.yield
// COM: }
// COM: scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>
// COM: }
// COM: return
// COM: }
// COM: // Enable the following test once we support view on shared memory tensors
// COM: // CHECK-LABEL: for_if_else
// COM: func @for_if_else(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {
// COM: // CHECK: res0:0 -> 0
// COM: %a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: // CHECK-NEXT: res1:0 -> 1
// COM: %b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: // CHECK-NEXT: res2:0 -> 2
// COM: %c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: // CHECK-NEXT: arg3:0 -> 0
// COM: // CHECK-NEXT: arg3:1 -> 1
// COM: // CHECK-NEXT: arg3:2 -> 2
// COM: // CHECK-NEXT: res3:0 -> 0
// COM: // CHECK-NEXT: res3:1 -> 1
// COM: // CHECK-NEXT: res3:2 -> 0,7
// COM: %a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>) {
// COM: // CHECK-NEXT: res4:0 -> 0,7
// COM: %c_shared_next = scf.if %i1 -> tensor<128x32xf16, #A> {
// COM: // CHECK-NEXT: res5:0 -> 0
// COM: %cst0 = tt.view %a_shared : (tensor<128x32xf16, #A>) -> tensor<128x32xf16, #A>
// COM: scf.yield %cst0 : tensor<128x32xf16, #A>
// COM: } else {
// COM: // CHECK-NEXT: res7:0 -> 7
// COM: %cst0 = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// COM: scf.yield %cst0 : tensor<128x32xf16, #A>
// COM: }
// COM: scf.yield %a_shared, %b_shared, %c_shared_next : tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>
// COM: }
// COM: return
// COM: }
// CHECK-LABEL: for_if
func @for_if(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {
// CHECK: %cst -> %cst
%a_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// CHECK-NEXT: %cst_0 -> %cst_0
%b_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// CHECK-NEXT: %cst_1 -> %cst_1
%c_shared_init = arith.constant dense<0.00e+00> : tensor<128x32xf16, #A>
// CHECK-NEXT: %arg7 -> %cst
// CHECK-NEXT: %arg8 -> %cst_0
// CHECK-NEXT: %arg9 -> %cst_1
// CHECK-NEXT: %0#0 -> %cst,%cst_0
// CHECK-NEXT: %0#1 -> %cst,%cst_0
// CHECK-NEXT: %0#2 -> %cst,%cst_0
%a_shared, %b_shared, %c_shared = scf.for %iv = %lb to %ub step %step iter_args(%a_shared = %a_shared_init, %b_shared = %b_shared_init, %c_shared = %c_shared_init) -> (tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>) {
scf.if %i1 {
%index = arith.constant 8 : i32
// CHECK-NEXT: %1 -> %cst,%cst_0
%cst0 = triton_gpu.extract_slice %a_shared, %index { axis = 0 : i32 } : tensor<128x32xf16, #A> -> tensor<32xf16, #A>
scf.yield
}
scf.yield %b_shared, %a_shared, %a_shared : tensor<128x32xf16, #A>, tensor<128x32xf16, #A>, tensor<128x32xf16, #A>
}
return
}
// CHECK-LABEL: for_if_for
func @for_if_for(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>, %i1 : i1) {