[BACKEND] Refactoring codegen for LoadOp with PTXFormat (#77)

This PR does following things:

Enhance the PTXFormat by
Introducing PTXBuilder to enable multiple instructions in a single asm program
override PTXInstr's operator() method to enable instr(opr0, opr1) style of setting operands for an instruction
Refactor the PTX code used in LoadOpConversion with PTXFormat

Authored-by: goostavz <gzhu@nvidia.com>
This commit is contained in:
Yan Chunwei
2022-08-24 06:51:13 +08:00
committed by GitHub
parent 0ebef11c77
commit 1b513c9866
3 changed files with 316 additions and 203 deletions

View File

@@ -13,29 +13,52 @@ namespace mlir {
namespace triton {
using llvm::StringRef;
// TODO(Superjomn) Move to a global utility file?
std::string strJoin(llvm::ArrayRef<std::string> strs,
llvm::StringRef delimiter);
class PTXInstr;
class PTXInstrCommon;
// A helper for building a single inline ASM instruction, the objective of
// PtxInstr is to give a thin encapsulation and make the ASM code for MLIR LLVM
// Dialect more clear. Currently, several factors are introduced to reduce the
// need for mixing string and C++ if-else code.
// PTXBuilder helps to manage a PTX asm program consists of one or multiple
// instructions.
//
// A helper for building a ASM program, the objective of PTXBuilder is to give a
// thin encapsulation and make the ASM code for MLIR LLVM Dialect more clear.
// Currently, several factors are introduced to reduce the need for mixing
// string and C++ if-else code.
//
// Usage:
// To build: asm("add.s32 %0, %1, %2;" : "=r"(i) : "r"(j), "r"(k));
// To build: asm("@%3 add.s32 %0, %1, %2;" : "=r"(i) : "r"(j), "r"(k), "b"(p));
//
// PtxInstr mulr("mul");
// mulr.o("lo").o("u32").addOperand(valueI, "=r") // %0 bind to valueI
// .addOperand(valueJ, "r") // %1 bind to valueJ
// .addOperand(valueK, "k"); // %2 bind to valueK
// PTXBuilder builder;
// auto& add = builder.create<>();
// add.predicate(pVal).o("lo").o("u32"); // add any suffix
// // predicate here binds %0 to pVal, pVal is a mlir::Value
//
// mulr.getConstrains() // get "=r,r,k"
// mulr.getAllMlirArgs() // get {valueI, valueJ, valueK}
// auto* iOpr = builder.newOperand(iVal, "r"); // %1 bind to iVal
// auto* jOpr = builder.newOperand(jVal, "r"); // %2 bind to jVal
// auto* kOpr = builder.newOperand(kVal, "r"); // %3 bind to kVal
// add(iOpr, jOpr, kOpr); // set operands
//
// TODO(Superjomn) Add multi-line ASM code support and register support later.
struct PtxInstr {
explicit PtxInstr(const std::string &name) { o(name); }
// To get the asm code:
// builder.dump()
//
// To get all the mlir::Value used in the PTX code,
//
// builder.getAllMlirArgs() // get {pVal, iVal, jVal, kVal}
//
// To get the string containing all the contraints with "," seperated,
// builder.getConstrains() // get "=r,r,k"
//
// PTXBuilder can build a PTX asm with multiple instructions, sample code:
//
// PTXBuilder builder;
// auto& instr0 = builder.create<>();
// auto& instr1 = builder.create<>();
// auto& instr2 = builder.create<>();
//
// NOTE, the instructions will be serialized in the order of creation.
//
// There are several derived instruction type for typical instructions, for
// example, the PtxIOInstr for ld and st instructions.
struct PTXBuilder {
struct Operand {
std::string constraint;
Value value;
@@ -48,16 +71,29 @@ struct PtxInstr {
Operand(Value value, StringRef constraint)
: value(value), constraint(constraint) {}
bool isList() const { return !value; }
bool isList() const { return !value && constraint.empty(); }
Operand *listAppend(Operand *arg) {
list.push_back(arg);
return this;
}
Operand *listGet(size_t nth) const {
assert(nth < list.size());
return list[nth];
}
std::string dump() const;
};
template <typename INSTR = PTXInstr> INSTR *create(const std::string &name) {
instrs.emplace_back(std::make_unique<INSTR>(this, name));
return static_cast<INSTR *>(instrs.back().get());
}
// Create a list of operands.
Operand *newListOperand() { return newOperand(); }
// Create a new operand. It will not add to operand list.
// @value: the MLIR value bind to this operand.
// @constraint: ASM operand constraint, .e.g. "=r"
@@ -66,7 +102,65 @@ struct PtxInstr {
Operand *newOperand(mlir::Value value, StringRef constraint,
std::function<std::string(int idx)> formater = nullptr);
// Append the operand to the intruction's operand list.
// Create a new operand which is written to, that is, the constraint starts
// with "=", e.g. "=r".
Operand *newOperand(StringRef constraint);
// Create a constant integer operand.
Operand *newConstantOperand(int v);
// Create a constant operand with explicit code specified.
Operand *newConstantOperand(const std::string &v);
Operand *newAddrOperand(mlir::Value addr, StringRef constraint, int off = 0);
llvm::SmallVector<Operand *> getAllArgs() const;
llvm::SmallVector<Value, 4> getAllMLIRArgs() const;
std::string getConstrains() const;
std::string dump() const;
private:
Operand *newOperand() {
argArchive.emplace_back(std::make_unique<Operand>());
return argArchive.back().get();
}
friend class PTXInstr;
protected:
llvm::SmallVector<std::unique_ptr<Operand>, 6> argArchive;
llvm::SmallVector<std::unique_ptr<PTXInstrCommon>, 2> instrs;
int oprCounter{};
};
// PTX instruction common interface.
// Put the generic logic for all the instructions here.
struct PTXInstrCommon {
explicit PTXInstrCommon(PTXBuilder *builder) : builder(builder) {}
using Operand = PTXBuilder::Operand;
llvm::SmallVector<Operand *> getArgList() const;
std::string dump() const;
// clang-format off
void operator()(Operand* a) { operator()({a}); }
void operator()(Operand* a, Operand* b) { operator()({a, b}); }
void operator()(Operand* a, Operand* b, Operand* c) { operator()({a, b, c}); }
void operator()(Operand* a, Operand* b, Operand* c, Operand* d) { operator()({a, b, c, d}); }
void operator()(Operand* a, Operand* b, Operand* c, Operand* d, Operand * e) { operator()({a, b, c, d, e}); }
void operator()(Operand* a, Operand* b, Operand* c, Operand* d, Operand * e, Operand* f) { operator()({a, b, c, d, e, f}); }
void operator()(Operand* a, Operand* b, Operand* c, Operand* d, Operand * e, Operand* f, Operand* g) { operator()({a, b, c, d, e, f, g}); }
// clang-format on
// Set operands of this instruction.
void operator()(llvm::ArrayRef<Operand *> oprs);
protected:
// Append the operand to the instruction's operand list.
Operand *addOperand(Operand *opr) {
assert(std::find(argsInOrder.begin(), argsInOrder.end(), opr) ==
argsInOrder.end());
@@ -74,78 +168,47 @@ struct PtxInstr {
return opr;
}
// Create and add an operand to the intruction's operand list.
Operand *addOperand(mlir::Value value, StringRef constraint) {
auto *opr = newOperand(value, constraint);
return addOperand(opr);
}
PTXBuilder *builder{};
Operand *pred{};
llvm::SmallVector<std::string, 4> instrParts;
llvm::SmallVector<Operand *> argsInOrder;
};
// Prefix a predicate to the instruction.
PtxInstr &predicate(mlir::Value value, StringRef constraint) {
pred = newOperand(value, constraint);
return *this;
template <class ConcreteT> struct PTXInstrBase : public PTXInstrCommon {
using Operand = PTXBuilder::Operand;
explicit PTXInstrBase(PTXBuilder *builder, const std::string &name)
: PTXInstrCommon(builder) {
o(name);
}
// Append a suffix to the instruction.
// e.g. PtxInstr("add").o("s32") get a add.s32.
// e.g. PTXInstr("add").o("s32") get a add.s32.
// A predicate is used to tell whether to apply the suffix, so that no if-else
// code needed. e.g. `PtxInstr("add").o("s32", isS32).o("u32", !isS32);` will
// code needed. e.g. `PTXInstr("add").o("s32", isS32).o("u32", !isS32);` will
// get a `add.s32` if isS32 is true.
PtxInstr &o(const std::string &suffix, bool predicate = true) {
ConcreteT &o(const std::string &suffix, bool predicate = true) {
if (predicate)
instrParts.push_back(suffix);
return *this;
return *static_cast<ConcreteT *>(this);
}
PtxInstr &addListOperation(llvm::ArrayRef<Operand *> list) {
auto *opr = newList();
for (auto *v : list)
opr->listAppend(v);
addOperand(opr);
return *this;
// Prefix a predicate to the instruction.
ConcreteT &predicate(mlir::Value value, StringRef constraint) {
pred = builder->newOperand(value, constraint);
return *static_cast<ConcreteT *>(this);
}
// Create a list of operands.
Operand *newList() {
argArchive.emplace_back(std::make_unique<Operand>());
return argArchive.back().get();
// Prefix a !predicate to the instruction.
ConcreteT &predicateNot(mlir::Value value, StringRef constraint) {
pred = builder->newOperand(value, constraint);
pred->repr = [](int idx) { return llvm::formatv("@!%{0}", idx); };
return *static_cast<ConcreteT *>(this);
}
};
std::string dump() const;
llvm::SmallVector<Operand *, 4> getArgList() const;
llvm::SmallVector<Operand *, 4> getAllArgs() const {
llvm::SmallVector<Operand *, 4> res;
for (auto &x : argArchive)
if (!x->isList())
res.push_back(x.get());
return res;
}
std::string getConstrains() const {
auto args = getAllArgs();
llvm::SmallVector<std::string, 4> argReprs;
for (auto arg : args)
argReprs.push_back(arg->constraint);
return strJoin(argReprs, ",");
}
llvm::SmallVector<Value, 4> getAllMlirArgs() const {
llvm::SmallVector<Value, 4> res;
for (auto &arg : argArchive) {
if (!arg->isList())
res.push_back(arg->value);
}
return res;
}
protected:
Operand *pred{};
int oprCounter{};
llvm::SmallVector<std::string, 4> instrParts;
llvm::SmallVector<std::unique_ptr<Operand>, 6> argArchive;
llvm::SmallVector<Operand *> argsInOrder;
std::string argStr;
struct PTXInstr : public PTXInstrBase<PTXInstr> {
using PTXInstrBase<PTXInstr>::PTXInstrBase;
};
// A helper for PTX ld/st instruction.
@@ -153,8 +216,8 @@ protected:
// PtxIOInstr store("st");
// store.predicate(pValue).global().v(32).b(1); // @%0 st.global.v32.b1
// store.addAddr(addrValue, "l", off);
struct PtxIOInstr : public PtxInstr {
PtxIOInstr(const std::string &name) : PtxInstr(name) {}
struct PtxIOInstr : public PTXInstrBase<PtxIOInstr> {
using PTXInstrBase<PtxIOInstr>::PTXInstrBase;
// Add ".global" suffix to instruction
PtxIOInstr &global(bool predicate = true) {
@@ -175,14 +238,6 @@ struct PtxIOInstr : public PtxInstr {
o(llvm::formatv("b{0}", width));
return *this;
}
PtxIOInstr &addAddr(mlir::Value addr, StringRef constraint, int off = 0) {
auto *operand = newAddrOperand(addr, constraint, off);
addOperand(operand);
return *this;
}
Operand *newAddrOperand(mlir::Value addr, StringRef constraint, int off = 0);
};
} // namespace triton

View File

@@ -1,9 +1,11 @@
#include "triton/Conversion/TritonGPUToLLVM/PtxAsmFormat.h"
#include "llvm/Support/raw_ostream.h"
#include <sstream> // unify to llvm::raw_string_ostream ?
namespace mlir {
namespace triton {
// TODO(Superjomn) Move to a global utility file?
std::string strJoin(llvm::ArrayRef<std::string> strs,
llvm::StringRef delimiter) {
std::string osStr;
@@ -16,11 +18,101 @@ std::string strJoin(llvm::ArrayRef<std::string> strs,
return osStr;
}
std::string PtxInstr::dump() const {
PTXInstr::Operand *
PTXBuilder::newOperand(mlir::Value value, StringRef constraint,
std::function<std::string(int)> formater) {
argArchive.emplace_back(std::make_unique<Operand>(value, constraint));
auto *opr = argArchive.back().get();
opr->repr = formater;
opr->idx = oprCounter++;
return opr;
}
PTXBuilder::Operand *PTXBuilder::newOperand(StringRef constraint) {
// Constraint should be something like "=r"
assert(!constraint.empty() && constraint[0] == '=');
auto *opr = newOperand();
opr->idx = oprCounter++;
opr->constraint = constraint;
return opr;
}
PTXBuilder::Operand *PTXBuilder::newConstantOperand(const std::string &v) {
argArchive.emplace_back(std::make_unique<Operand>());
argArchive.back()->repr = [v](int idx) { return v; };
return argArchive.back().get();
}
PTXBuilder::Operand *PTXBuilder::newConstantOperand(int v) {
std::stringstream ss;
ss << "0x" << std::hex << v;
return newConstantOperand(ss.str());
}
std::string PTXBuilder::getConstrains() const {
auto args = getAllArgs();
llvm::SmallVector<std::string, 4> argReprs;
for (auto arg : args)
argReprs.push_back(arg->constraint);
return strJoin(argReprs, ",");
}
llvm::SmallVector<Value, 4> PTXBuilder::getAllMLIRArgs() const {
llvm::SmallVector<Value, 4> res;
for (auto &arg : argArchive) {
if (!arg->isList() && arg->value)
res.push_back(arg->value);
}
return res;
}
SmallVector<PTXBuilder::Operand *> PTXBuilder::getAllArgs() const {
llvm::SmallVector<Operand *, 4> res;
for (auto &x : argArchive)
if (!x->isList())
res.push_back(x.get());
return res;
}
std::string PTXInstr::Operand::dump() const {
if (repr)
return repr(idx);
if (!isList())
return llvm::formatv("${0}", idx);
llvm::SmallVector<std::string> oprs;
for (auto *opr : list)
oprs.push_back(opr->dump());
return "{ " + strJoin(oprs, ", ") + " }";
}
PTXInstr::Operand *PTXBuilder::newAddrOperand(mlir::Value addr,
StringRef constraint, int off) {
auto *opr = newOperand(addr, constraint);
opr->repr = [off](int idx) -> std::string {
return llvm::formatv("[ ${0} + {1} ]", idx, off);
};
return opr;
}
std::string PTXBuilder::dump() const {
llvm::SmallVector<std::string> lines;
for (auto &instr : instrs) {
lines.push_back(instr->dump());
}
return strJoin(lines, "\n\t");
}
std::string PTXInstrCommon::dump() const {
std::string osStr;
llvm::raw_string_ostream os(osStr);
if (pred)
os << "@" << pred->dump() << " ";
if (!pred->repr)
os << "@" << pred->dump() << " ";
else
os << pred->repr(pred->idx);
std::string instrRepr = strJoin(instrParts, ".");
@@ -36,7 +128,7 @@ std::string PtxInstr::dump() const {
return osStr;
}
llvm::SmallVector<PtxInstr::Operand *, 4> PtxInstr::getArgList() const {
SmallVector<PTXInstrCommon::Operand *> PTXInstrCommon::getArgList() const {
SmallVector<Operand *> args;
for (auto *arg : argsInOrder) {
if (arg->isList())
@@ -47,35 +139,10 @@ llvm::SmallVector<PtxInstr::Operand *, 4> PtxInstr::getArgList() const {
return args;
}
PtxInstr::Operand *
PtxInstr::newOperand(mlir::Value value, StringRef constraint,
std::function<std::string(int)> formater) {
argArchive.emplace_back(std::make_unique<Operand>(value, constraint));
auto *opr = argArchive.back().get();
opr->repr = formater;
opr->idx = oprCounter++;
return opr;
}
std::string PtxInstr::Operand::dump() const {
if (repr)
return repr(idx);
if (!isList())
return llvm::formatv("${0}", idx);
llvm::SmallVector<std::string> oprs;
for (auto *opr : list)
oprs.push_back(opr->dump());
return "{ " + strJoin(oprs, ", ") + " }";
}
PtxInstr::Operand *PtxIOInstr::newAddrOperand(mlir::Value addr,
StringRef constraint, int off) {
auto *opr = newOperand(addr, constraint);
opr->repr = [off](int idx) -> std::string {
return llvm::formatv("[ ${0} + {1} ]", idx, off);
};
return opr;
void PTXInstrCommon::operator()(ArrayRef<Operand *> oprs) {
for (auto *opr : oprs) {
addOperand(opr);
}
}
} // namespace triton
} // namespace mlir

View File

@@ -708,18 +708,20 @@ struct StoreOpConversion
// TODO(Superjomn) deal with cache policy.
const bool hasL2EvictPolicy = false;
PtxIOInstr asmStoreInstr("st");
asmStoreInstr.predicate(maskElems[vecIdx], "b");
asmStoreInstr.global().b(width).v(nWords);
PTXBuilder ptxBuilder;
auto &ptxStoreInstr = *ptxBuilder.create<PtxIOInstr>("st");
ptxStoreInstr.predicate(maskElems[vecIdx], "b")
.global()
.b(width)
.v(nWords);
llvm::SmallVector<std::string> asmArgs;
Type valArgTy = IntegerType::get(ctx, width);
auto wordTy = VectorType::get(wordNElems, valueElemTy);
auto *asmAddr =
asmStoreInstr.newAddrOperand(ptrElems[vecIdx], "l", in_off);
auto *asmArgList = asmStoreInstr.newList();
auto *asmAddr = ptxBuilder.newAddrOperand(ptrElems[vecIdx], "l", in_off);
auto *asmArgList = ptxBuilder.newListOperand();
for (int wordIdx = 0; wordIdx < nWords; wordIdx++) {
// llWord is a width-len composition
Value llWord = rewriter.create<LLVM::UndefOp>(loc, wordTy);
@@ -740,11 +742,10 @@ struct StoreOpConversion
llWord = rewriter.create<LLVM::BitcastOp>(loc, valArgTy, llWord);
std::string constraint =
(width == 64) ? "l" : ((width == 32) ? "r" : "c");
asmArgList->listAppend(asmStoreInstr.newOperand(llWord, constraint));
asmArgList->listAppend(ptxBuilder.newOperand(llWord, constraint));
}
asmStoreInstr.addOperand(asmAddr);
asmStoreInstr.addOperand(asmArgList);
ptxStoreInstr(asmAddr, asmArgList);
llvm::SmallVector<Type, 4> argTys({mask.getType(), ptr.getType()});
for (int i = 0; i < nWords; i++)
@@ -753,9 +754,9 @@ struct StoreOpConversion
auto ASMReturnTy = LLVM::LLVMStructType::getLiteral(ctx, /*returnTy*/ {});
auto inlineAsm = rewriter.create<LLVM::InlineAsmOp>(
loc, ASMReturnTy, asmStoreInstr.getAllMlirArgs(), // operands
asmStoreInstr.dump(), // asm_string
asmStoreInstr.getConstrains(), // constraints
loc, ASMReturnTy, ptxBuilder.getAllMLIRArgs(), // operands
ptxBuilder.dump(), // asm_string
ptxBuilder.getConstrains(), // constraints
// TODO(Superjomn) determine the side effect.
true, // has_side_effects
false, // is_align_stack
@@ -1008,43 +1009,54 @@ struct LoadOpConversion
// ---
// create inline asm string
// ---
// TODO: (Superjomn) refactor with AsmInstr abstraction
std::ostringstream asmOss;
asmOss << "@$" << n_words; // predicate
asmOss << " ld";
if (op.isVolatile()) {
asmOss << ".volatile";
const std::string writeConstrait =
(width == 64) ? "=l" : ((width == 32) ? "=r" : "=c");
const std::string readConstrait =
(width == 64) ? "l" : ((width == 32) ? "r" : "c");
PTXBuilder ptxBuilder;
PtxIOInstr &ld = *ptxBuilder.create<PtxIOInstr>("ld");
// Define the instruction opcode
ld.predicate(pred, "b")
.o("violatile", op.isVolatile())
.global()
.o("ca", op.cache() == triton::CacheModifier::CA)
.o("cg", op.cache() == triton::CacheModifier::CG)
.o("L1::evict_first",
op.evict() == triton::EvictionPolicy::EVICT_FIRST)
.o("L1::evict_last", op.evict() == triton::EvictionPolicy::EVICT_LAST)
.o("L1::cache_hint", has_l2_evict_policy)
.v(n_words)
.b(width);
// prepare asm operands
auto *dstsOpr = ptxBuilder.newListOperand();
for (int i = 0; i < n_words; i++) {
auto *opr = ptxBuilder.newOperand(writeConstrait); // =r operations
dstsOpr->listAppend(opr);
}
asmOss << ".global";
if (op.cache() == triton::CacheModifier::CA)
asmOss << ".ca";
if (op.cache() == triton::CacheModifier::CG)
asmOss << ".cg";
if (op.evict() == triton::EvictionPolicy::EVICT_FIRST)
asmOss << ".L1::evict_first";
if (op.evict() == triton::EvictionPolicy::EVICT_LAST)
asmOss << ".L1::evict_last";
if (has_l2_evict_policy)
asmOss << ".L2::cache_hint";
if (n_words > 1)
asmOss << ".v" << n_words; // vector width
asmOss << ".b" << width; // word size
asmOss << " {";
for (int i = 0; i < n_words; i++) { // return values
if (i > 0)
asmOss << ",";
asmOss << "$" << i;
}
asmOss << "}";
asmOss << ", [ $" << n_words + 1; // load
asmOss << " + " << in_off << "]"; // constant offset
if (has_l2_evict_policy)
asmOss << ", $" << n_words + 2;
asmOss << ";";
auto *addrOpr = ptxBuilder.newAddrOperand(ptr, "l", in_off);
PTXBuilder::Operand *evictOpr{};
// Here lack a mlir::Value to bind to this operation, so disabled.
// if (has_l2_evict_policy)
// evictOpr = ptxBuilder.newOperand(l2Evict, "l");
if (!evictOpr)
ld(dstsOpr, addrOpr);
else
ld(dstsOpr, addrOpr, evictOpr);
SmallVector<Value> others;
if (other != nullptr) {
if (other) {
for (size_t ii = 0; ii < n_words; ii++) {
PTXInstr &mov = *ptxBuilder.create<>("mov");
mov.predicateNot(pred, "b").o("u", width);
size_t size = width / nbits;
auto vecTy = LLVM::getFixedVectorType(elemTy, size);
Value v = rewriter.create<LLVM::UndefOp>(loc, vecTy);
for (size_t s = 0; s < size; s++) {
@@ -1056,20 +1068,19 @@ struct LoadOpConversion
}
v = rewriter.create<LLVM::BitcastOp>(
loc, IntegerType::get(getContext(), width), v);
asmOss << "\n ";
asmOss << "@!$" << n_words << " mov.u" << width;
asmOss << " $" << ii << ", ";
std::ios_base::fmtflags flags(asmOss.flags());
if (otherIsSplatConstInt)
asmOss << "0x" << std::hex << splatVal;
else {
asmOss << "$" << n_words + has_l2_evict_policy + 2 + ii;
PTXInstr::Operand *opr{};
if (otherIsSplatConstInt) {
opr = ptxBuilder.newConstantOperand(splatVal);
} else {
opr = ptxBuilder.newOperand(v, readConstrait);
others.push_back(v);
}
asmOss.flags(flags);
asmOss << ";";
mov(dstsOpr->listGet(ii), opr);
}
}
// ---
// create inline ASM signature
// ---
@@ -1077,39 +1088,18 @@ struct LoadOpConversion
Type retTy = retTys.size() > 1
? LLVM::LLVMStructType::getLiteral(getContext(), retTys)
: retTys[0];
// ---
// create inline ASM constraints
// ---
std::string asmCstrt;
for (int ii = 0; ii < n_words; ii++) {
if (ii > 0)
asmCstrt += ",";
asmCstrt += (width == 64) ? "=l" : ((width == 32) ? "=r" : "=c");
}
asmCstrt += ",b,l";
for (size_t ii = 0; ii < others.size(); ii++) {
asmCstrt += ",";
asmCstrt += (width == 64) ? "l" : ((width == 32) ? "r" : "c");
}
if (has_l2_evict_policy) {
asmCstrt += ",l";
}
// ---
// finally call inline ASM
// ---
SmallVector<Value> args = {pred, ptr};
for (Value v : others) {
args.push_back(v);
}
// TODO: if (has_l2_evict_policy)
auto asmDialectAttr = LLVM::AsmDialectAttr::get(rewriter.getContext(),
LLVM::AsmDialect::AD_ATT);
auto inlineAsmOp = rewriter.create<LLVM::InlineAsmOp>(
loc, retTy, /*operands=*/args, /*asm_string=*/asmOss.str(),
/*constraints=*/asmCstrt, /*has_side_effects=*/true,
loc, retTy, /*operands=*/ptxBuilder.getAllMLIRArgs(),
/*asm_string=*/ptxBuilder.dump(),
/*constraints=*/ptxBuilder.getConstrains(), /*has_side_effects=*/true,
/*is_align_stack=*/false, /*asm_dialect=*/asmDialectAttr,
/*operand_attrs=*/ArrayAttr());
Value ret = inlineAsmOp.getResult(0);
// ---
// extract and store return values
// ---
@@ -1135,7 +1125,7 @@ struct LoadOpConversion
loc, elemTy, rets[ii / tmp], vecIdx);
loadedVals.push_back(loaded);
}
}
} // end vec
Type llvmResultStructTy = getTypeConverter()->convertType(resultTy);
Value resultStruct =
getStructFromElements(loc, loadedVals, rewriter, llvmResultStructTy);
@@ -1314,7 +1304,8 @@ public:
auto axisAnalysis = runAxisAnalysis(mod);
// We set a higher benefit here to ensure triton's patterns runs before
// arith patterns for some encoding not supported by the community patterns.
// arith patterns for some encoding not supported by the community
// patterns.
populateTritonToLLVMPatterns(typeConverter, patterns, numWarps,
*axisAnalysis, 10 /*benefit*/);