[triton/codegen] added shared memory padding for HMMA arguments and vectorized loads

This commit is contained in:
Philippe Tillet
2019-06-11 13:27:54 -07:00
parent cbd916994d
commit 1b5a742a88
9 changed files with 61 additions and 39 deletions

View File

@@ -7,9 +7,7 @@ if(${TensorFlow_FOUND})
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI})
add_library(tf_blocksparse SHARED dot.cpp)
target_link_libraries(tf_blocksparse tensorflow_framework triton)
add_custom_command(
TARGET tf_blocksparse POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/run.py
${CMAKE_CURRENT_BINARY_DIR}/run.py)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/run.py
${CMAKE_CURRENT_BINARY_DIR}/run.py
COPYONLY)
endif()

View File

@@ -21,9 +21,9 @@ using GPUDevice = Eigen::GpuDevice;
const char* src =
R"(
const tunable int32 TM = {8, 16, 32, 64, 128};
const tunable int32 TN = {8, 16, 32, 64, 128};
const tunable int32 TK = {8};
const tunable int32 TM = {64, 128};
const tunable int32 TN = {64, 128};
const tunable int32 TK = {32};
const tunable int32 GZ = {1};
void matmul(restrict read_only fp16 *A, restrict read_only fp16 *B,
@@ -37,20 +37,14 @@ void matmul(restrict read_only fp16 *A, restrict read_only fp16 *B,
int32 rka[TK] = 0 ... TK;
int32 rkb[TK] = 0 ... TK;
fp32 c[TM, TN] = 0;
int32 div = K / GZ;
int32 rem = K % GZ;
K = select(rz < rem, div - 1, div);
int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem);
fp16* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
fp16* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
fp16 a[TM, TK] = *pa;
fp16 b[TN, TK] = *pb;
for(int32 k = K; k > 0; k = k - TK){
fp16* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis];
fp16* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis];
for(int32 k = K; k > TK; k = k - TK){
fp16 a[TM, TK] = *pa;
fp16 b[TN, TK] = *pb;
c = dot(a, trans(b), c);
pa = pa + TK*lda;
pb = pb + TK*ldb;
a = *pa;
b = *pb;
}
int32 rxc[TM] = get_global_range[TM](0);
int32 ryc[TN] = get_global_range[TN](1);
@@ -123,10 +117,10 @@ class BlockSparseGemmOp : public OpKernel {
return 2.*M*N*K / ts * 1e-3;
};
// just-in-time compile source-code
// jit.autotune("matmul", src, benchmark);
jit.autotune("matmul", src, benchmark);
// jit.add_module("matmul", src, {4, 2, 8, 4, 2, 32, 1, 4, 1, 1, 8, 8, 8, 1});
// jit.add_module("matmul", src, {32, 2, 128, 32, 2, 128, 2, 2, 2, 2, 4, 8, 4, 1});
jit.add_module("matmul", src, {16, 4, 128, 32, 4, 128, 2, 2, 2, 2, 8, 8, 4, 1});
jit.add_module("matmul", src, {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 32, 8, 1});
triton::driver::kernel* kernel = jit.get_function("matmul");
triton::jit::launch_information info = jit.get_launch_info("matmul");
std::cout << benchmark(kernel, info) << std::endl;;

View File

@@ -6,7 +6,7 @@ data_files_path = tf.resource_loader.get_data_files_path()
library_dir = os.path.dirname(os.path.realpath(__file__))
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
M, N, K = 256,256,256
M, N, K = 8192,8192,8192
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
locks = tf.placeholder(tf.int32, shape=[4096])
@@ -30,9 +30,9 @@ result = sess.run([c], feed_dict = {locks: np.zeros(4096),
# min_iters=100)
#print(end - start)
#print(2*M*N*K / (end - start) * 1e-12)
hresult = np.dot(ha.T, hb).T
dif = np.abs(result - hresult)
print("dif: %f" % np.max(dif))
#hresult = np.dot(ha.T, hb).T
#dif = np.abs(result - hresult)
#print("dif: %f" % np.max(dif))
#np.savetxt("dif.txt", dif, fmt="%5.2f")
#np.savetxt("gpu.txt", result, fmt="%5.2f")