[triton/codegen] added shared memory padding for HMMA arguments and vectorized loads

This commit is contained in:
Philippe Tillet
2019-06-11 13:27:54 -07:00
parent cbd916994d
commit 1b5a742a88
9 changed files with 61 additions and 39 deletions

View File

@@ -6,8 +6,8 @@ list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
# FLEX/YACC
find_package(BISON)
find_package(FLEX)
BISON_TARGET(Parser ${CMAKE_CURRENT_SOURCE_DIR}/include/triton/lang/parser.y ${CMAKE_CURRENT_BINARY_DIR}/parser.cpp)
FLEX_TARGET(Lexer ${CMAKE_CURRENT_SOURCE_DIR}/include/triton/lang/scanner.l ${CMAKE_CURRENT_BINARY_DIR}/scanner.cpp)
BISON_TARGET(Parser ${CMAKE_CURRENT_SOURCE_DIR}/include/triton/lang/parser.y ${CMAKE_CURRENT_SOURCE_DIR}/lib/lang/parser.cpp)
FLEX_TARGET(Lexer ${CMAKE_CURRENT_SOURCE_DIR}/include/triton/lang/scanner.l ${CMAKE_CURRENT_SOURCE_DIR}/lib/lang/scanner.cpp)
get_filename_component(BISON_Parser_INCLUDE_DIRECTORIES ${BISON_Parser_OUTPUT_HEADER} DIRECTORY)
include_directories(${BISON_Parser_INCLUDE_DIRECTORIES})

View File

@@ -7,9 +7,7 @@ if(${TensorFlow_FOUND})
add_definitions(-D_GLIBCXX_USE_CXX11_ABI=${TF_ABI})
add_library(tf_blocksparse SHARED dot.cpp)
target_link_libraries(tf_blocksparse tensorflow_framework triton)
add_custom_command(
TARGET tf_blocksparse POST_BUILD
COMMAND ${CMAKE_COMMAND} -E copy
${CMAKE_CURRENT_SOURCE_DIR}/run.py
${CMAKE_CURRENT_BINARY_DIR}/run.py)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/run.py
${CMAKE_CURRENT_BINARY_DIR}/run.py
COPYONLY)
endif()

View File

@@ -21,9 +21,9 @@ using GPUDevice = Eigen::GpuDevice;
const char* src =
R"(
const tunable int32 TM = {8, 16, 32, 64, 128};
const tunable int32 TN = {8, 16, 32, 64, 128};
const tunable int32 TK = {8};
const tunable int32 TM = {64, 128};
const tunable int32 TN = {64, 128};
const tunable int32 TK = {32};
const tunable int32 GZ = {1};
void matmul(restrict read_only fp16 *A, restrict read_only fp16 *B,
@@ -37,20 +37,14 @@ void matmul(restrict read_only fp16 *A, restrict read_only fp16 *B,
int32 rka[TK] = 0 ... TK;
int32 rkb[TK] = 0 ... TK;
fp32 c[TM, TN] = 0;
int32 div = K / GZ;
int32 rem = K % GZ;
K = select(rz < rem, div - 1, div);
int32 offk = select(rz < rem, rz*(div + 1), rz*div + rem);
fp16* pa[TM, TK] = A + (offk + rka[newaxis, :])*lda + rxa[:, newaxis];
fp16* pb[TN, TK] = B + (offk + rkb[newaxis, :])*ldb + ryb[:, newaxis];
fp16 a[TM, TK] = *pa;
fp16 b[TN, TK] = *pb;
for(int32 k = K; k > 0; k = k - TK){
fp16* pa[TM, TK] = A + rka[newaxis, :]*lda + rxa[:, newaxis];
fp16* pb[TN, TK] = B + rkb[newaxis, :]*ldb + ryb[:, newaxis];
for(int32 k = K; k > TK; k = k - TK){
fp16 a[TM, TK] = *pa;
fp16 b[TN, TK] = *pb;
c = dot(a, trans(b), c);
pa = pa + TK*lda;
pb = pb + TK*ldb;
a = *pa;
b = *pb;
}
int32 rxc[TM] = get_global_range[TM](0);
int32 ryc[TN] = get_global_range[TN](1);
@@ -123,10 +117,10 @@ class BlockSparseGemmOp : public OpKernel {
return 2.*M*N*K / ts * 1e-3;
};
// just-in-time compile source-code
// jit.autotune("matmul", src, benchmark);
jit.autotune("matmul", src, benchmark);
// jit.add_module("matmul", src, {4, 2, 8, 4, 2, 32, 1, 4, 1, 1, 8, 8, 8, 1});
// jit.add_module("matmul", src, {32, 2, 128, 32, 2, 128, 2, 2, 2, 2, 4, 8, 4, 1});
jit.add_module("matmul", src, {16, 4, 128, 32, 4, 128, 2, 2, 2, 2, 8, 8, 4, 1});
jit.add_module("matmul", src, {16, 4, 128, 16, 4, 128, 2, 2, 2, 2, 8, 32, 8, 1});
triton::driver::kernel* kernel = jit.get_function("matmul");
triton::jit::launch_information info = jit.get_launch_info("matmul");
std::cout << benchmark(kernel, info) << std::endl;;

View File

@@ -6,7 +6,7 @@ data_files_path = tf.resource_loader.get_data_files_path()
library_dir = os.path.dirname(os.path.realpath(__file__))
module = tf.load_op_library(os.path.join(library_dir, 'libtf_blocksparse.so'))
M, N, K = 256,256,256
M, N, K = 8192,8192,8192
a = tf.placeholder(tf.float16, shape=[M, K])
b = tf.placeholder(tf.float16, shape=[N, K])
locks = tf.placeholder(tf.int32, shape=[4096])
@@ -30,9 +30,9 @@ result = sess.run([c], feed_dict = {locks: np.zeros(4096),
# min_iters=100)
#print(end - start)
#print(2*M*N*K / (end - start) * 1e-12)
hresult = np.dot(ha.T, hb).T
dif = np.abs(result - hresult)
print("dif: %f" % np.max(dif))
#hresult = np.dot(ha.T, hb).T
#dif = np.abs(result - hresult)
#print("dif: %f" % np.max(dif))
#np.savetxt("dif.txt", dif, fmt="%5.2f")
#np.savetxt("gpu.txt", result, fmt="%5.2f")

View File

@@ -18,15 +18,16 @@ class layout;
class target_tuner;
class shmem_liveness;
class shmem_info;
class tune;
class shmem_allocation {
public:
shmem_allocation(shmem_liveness *live, shmem_info *buffer_info)
: liveness_(live), buffer_info_(buffer_info){ }
shmem_allocation(shmem_liveness *live, shmem_info *buffer_info, tune *params)
: liveness_(live), buffer_info_(buffer_info), params_(params){ }
// utilities
unsigned get_num_bytes(ir::value *x);
bool is_ld_padded(ir::value* x);
unsigned is_ld_padded(ir::value* x);
// accessors
unsigned get_offset(ir::value *x) const { return offsets_.at(x); }
@@ -42,6 +43,7 @@ private:
// dependences
shmem_liveness *liveness_;
shmem_info *buffer_info_;
tune *params_;
};
}

View File

@@ -53,7 +53,7 @@ public:
struct passes_wrapper {
passes_wrapper(codegen::target* target)
: shmem_liveness(&shmem_info),
shmem_allocation(&shmem_liveness, &shmem_info),
shmem_allocation(&shmem_liveness, &shmem_info, &tune),
shmem_barriers(&shmem_allocation, &shmem_info),
vectorize(&tune),
selection(&shmem_allocation, &tune, &shmem_info, target),

View File

@@ -612,8 +612,9 @@ void selection::create_tile(ir::value *v, IRBuilder<> &builder,
std::vector<unsigned> shapes;
for(ir::constant_int* shape: cshapes)
shapes.push_back(shape->get_value());
if(alloc_->is_ld_padded(v))
shapes[0] += 4;
unsigned pad = alloc_->is_ld_padded(v);
if(pad > 0)
shapes[0] += pad;
Type* ty = llvm_type(v->get_type()->get_scalar_ty(), ctx);
// create shared tile
if(buffer_info_->is_shared(v)){
@@ -1040,6 +1041,23 @@ void selection::lower_tile_instruction(ir::instruction *ins, llvm::IRBuilder<> &
});
}
}
else if(auto *ld = dynamic_cast<ir::load_inst*>(ins)){
unsigned vector_size = result->axis(0).contiguous;
std::map<unsigned, Value*> packets;
distributed_tile *TP = (distributed_tile*)tmap_.at(ld->get_pointer_operand());
result->for_each([&](indices_t idx){
set_mask_insert_pt(idx);
unsigned linear = result->get_linear_index(idx);
unsigned id = linear / vector_size;
if(linear % vector_size == 0){
Value *ptr = TP->get_value(idx);
ptr= builder.CreateBitCast(ptr, PointerType::get(VectorType::get(result->get_ty(), vector_size),
ptr->getType()->getPointerAddressSpace()));
packets[id] = builder.CreateLoad(ptr);
}
result->set_value(idx, builder.CreateExtractElement(packets.at(id), linear % vector_size));
});
}
// element-wise
else {
result->for_each([&](indices_t idx){

View File

@@ -1,6 +1,7 @@
#include "triton/codegen/shmem_allocation.h"
#include "triton/codegen/shmem_liveness.h"
#include "triton/codegen/shmem_info.h"
#include "triton/codegen/tune.h"
#include "triton/ir/basic_block.h"
#include "triton/ir/type.h"
#include "triton/ir/value.h"
@@ -10,7 +11,7 @@
namespace triton{
namespace codegen{
bool shmem_allocation::is_ld_padded(ir::value *x) {
unsigned shmem_allocation::is_ld_padded(ir::value *x) {
if(auto* phi = dynamic_cast<ir::phi_node*>(x)) {
bool result = false;
for(unsigned i = 0; i < phi->get_num_incoming(); i++)
@@ -18,15 +19,24 @@ bool shmem_allocation::is_ld_padded(ir::value *x) {
return result;
}
if(dynamic_cast<ir::trans_inst*>(x))
return true;
return false;
return 4;
for(ir::user* user: x->get_users())
if(dynamic_cast<ir::dot_inst*>(user))
if(params_->get_fragment(user, 0) == tune::HMMA_FRAGMENT_C){
if(x == user->get_operand(0))
return 16;
else
return 16;
}
return 0;
}
unsigned shmem_allocation::get_num_bytes(ir::value *x) {
unsigned result = x->get_type()->get_primitive_size_in_bits() / 8;
if(is_ld_padded(x)){
unsigned pad = is_ld_padded(x);
if(pad > 0){
unsigned ld = x->get_type()->get_tile_shapes()[0]->get_value();
result += 4 * result / ld;
result += pad * result / ld;
}
if(buffer_info_->is_double(x))
result *= 2;

View File

@@ -255,7 +255,7 @@ std::string cu_module::compile_llvm_module(llvm::Module* module) {
cu_module::cu_module(driver::context * context, llvm::Module* ll_module): cu_module(context, compile_llvm_module(ll_module)) { }
cu_module::cu_module(driver::context * context, std::string const & source) : module(context, CUmodule(), true), source_(source){
std::cout << source << std::endl;
// std::cout << source << std::endl;
cu_context::context_switcher ctx_switch(*context);
// JIT compile source-code
CUjit_option opt[] = {CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES, CU_JIT_ERROR_LOG_BUFFER};