[Backend] Add value cache in emitting indices calculation and some refinement (#1018)

1, add explicit value cache in emitting indices calculation;
2, move the indices calculation emitting logics into
ConvertTritonGPUOpToLLVMPatternBase to avoid the redundant build cost by
templates. Refer to the discussion in this thread by @LyricZhao :
https://triton-lang.slack.com/archives/C042VBSQWNS/p1671336755922969
This commit is contained in:
goostavz
2022-12-30 03:19:59 +08:00
committed by GitHub
parent 2ba74d2729
commit 1d3029faf8
11 changed files with 355 additions and 180 deletions

View File

@@ -18,7 +18,6 @@ using ::mlir::LLVM::SharedMemoryObject;
using ::mlir::triton::gpu::BlockedEncodingAttr;
using ::mlir::triton::gpu::MmaEncodingAttr;
using ::mlir::triton::gpu::SliceEncodingAttr;
// FuncOpConversion/FuncOpConversionBase is borrowed from
// https://github.com/llvm/llvm-project/blob/fae656b2dd80246c3c6f01e9c77c49560368752c/mlir/lib/Conversion/FuncToLLVM/FuncToLLVM.cpp#L276
// since it is not exposed on header files in mlir v14
@@ -128,7 +127,60 @@ protected:
}
};
struct ConvertTritonGPUOpToLLVMPatternBase {
using IndexCacheKeyT = std::pair<Attribute, SmallVector<int64_t>>;
struct CacheKeyDenseMapInfo {
static IndexCacheKeyT getEmptyKey() {
auto *pointer = llvm::DenseMapInfo<void *>::getEmptyKey();
return std::make_pair(
mlir::Attribute(static_cast<mlir::Attribute::ImplType *>(pointer)),
SmallVector<int64_t>{});
}
static IndexCacheKeyT getTombstoneKey() {
auto *pointer = llvm::DenseMapInfo<void *>::getTombstoneKey();
return std::make_pair(
mlir::Attribute(static_cast<mlir::Attribute::ImplType *>(pointer)),
SmallVector<int64_t>{std::numeric_limits<int64_t>::max()});
}
static unsigned getHashValue(IndexCacheKeyT key) {
return llvm::hash_combine(
mlir::hash_value(key.first),
llvm::hash_combine_range(key.second.begin(), key.second.end()));
}
static bool isEqual(IndexCacheKeyT LHS, IndexCacheKeyT RHS) {
return LHS == RHS;
}
};
class ConvertTritonGPUOpToLLVMPatternBase {
public:
// Two levels of value cache in emitting indices calculation:
// Key: pair<layout, shape>
struct IndexCacheInfo {
DenseMap<IndexCacheKeyT, SmallVector<Value>, CacheKeyDenseMapInfo>
*baseIndexCache;
DenseMap<IndexCacheKeyT, SmallVector<SmallVector<Value>>,
CacheKeyDenseMapInfo> *indexCache;
OpBuilder::InsertPoint *indexInsertPoint;
};
explicit ConvertTritonGPUOpToLLVMPatternBase(LLVMTypeConverter &typeConverter)
: converter(&typeConverter) {}
explicit ConvertTritonGPUOpToLLVMPatternBase(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem)
: converter(&typeConverter), allocation(allocation), smem(smem) {}
explicit ConvertTritonGPUOpToLLVMPatternBase(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem,
IndexCacheInfo indexCacheInfo)
: converter(&typeConverter), indexCacheInfo(indexCacheInfo),
allocation(allocation), smem(smem) {}
LLVMTypeConverter *getTypeConverter() const { return converter; }
static Value
getStructFromSharedMemoryObject(Location loc,
const SharedMemoryObject &smemObj,
@@ -139,25 +191,6 @@ struct ConvertTritonGPUOpToLLVMPatternBase {
LLVM::LLVMStructType::getLiteral(rewriter.getContext(), types);
return getStructFromElements(loc, elems, rewriter, structTy);
}
};
template <typename SourceOp>
class ConvertTritonGPUOpToLLVMPattern
: public ConvertOpToLLVMPattern<SourceOp>,
public ConvertTritonGPUOpToLLVMPatternBase {
public:
using OpAdaptor = typename SourceOp::Adaptor;
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit),
allocation(allocation), smem(smem) {}
Value getThreadId(ConversionPatternRewriter &rewriter, Location loc) const {
auto llvmIndexTy = this->getTypeConverter()->getIndexType();
@@ -169,6 +202,23 @@ public:
return threadId;
}
// -----------------------------------------------------------------------
// Shared memory utilities
// -----------------------------------------------------------------------
template <typename T>
Value getSharedMemoryBase(Location loc, ConversionPatternRewriter &rewriter,
T value) const {
auto ptrTy = LLVM::LLVMPointerType::get(
this->getTypeConverter()->convertType(rewriter.getI8Type()), 3);
auto bufferId = allocation->getBufferId(value);
assert(bufferId != Allocation::InvalidBufferId && "BufferId not found");
size_t offset = allocation->getOffset(bufferId);
Value offVal = idx_val(offset);
Value base = gep(ptrTy, smem, offVal);
return base;
}
// -----------------------------------------------------------------------
// Utilities
// -----------------------------------------------------------------------
@@ -242,6 +292,116 @@ public:
return ret;
}
struct SmallVectorKeyInfo {
static unsigned getHashValue(const SmallVector<unsigned> &key) {
return llvm::hash_combine_range(key.begin(), key.end());
}
static bool isEqual(const SmallVector<unsigned> &lhs,
const SmallVector<unsigned> &rhs) {
return lhs == rhs;
}
static SmallVector<unsigned> getEmptyKey() {
return SmallVector<unsigned>();
}
static SmallVector<unsigned> getTombstoneKey() {
return {std::numeric_limits<unsigned>::max()};
}
};
// -----------------------------------------------------------------------
// Get offsets / indices for any layout
// -----------------------------------------------------------------------
SmallVector<Value> emitBaseIndexForLayout(Location loc,
ConversionPatternRewriter &rewriter,
const Attribute &layout,
ArrayRef<int64_t> shape) const {
IndexCacheKeyT key = std::make_pair(layout, llvm::to_vector(shape));
auto cache = indexCacheInfo.baseIndexCache;
assert(cache && "baseIndexCache is nullptr");
auto insertPt = indexCacheInfo.indexInsertPoint;
if (cache->count(key) > 0) {
return cache->lookup(key);
} else {
ConversionPatternRewriter::InsertionGuard guard(rewriter);
restoreInsertionPointIfSet(insertPt, rewriter);
SmallVector<Value> result;
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>()) {
result =
emitBaseIndexForBlockedLayout(loc, rewriter, blockedLayout, shape);
} else if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.isVolta())
result = emitBaseIndexForMmaLayoutV1(loc, rewriter, mmaLayout, shape);
if (mmaLayout.isAmpere())
result = emitBaseIndexForMmaLayoutV2(loc, rewriter, mmaLayout, shape);
} else {
llvm_unreachable("unsupported emitBaseIndexForLayout");
}
cache->insert(std::make_pair(key, result));
*insertPt = rewriter.saveInsertionPoint();
return result;
}
}
SmallVector<SmallVector<unsigned>>
emitOffsetForLayout(const Attribute &layout, ArrayRef<int64_t> shape) const {
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>())
return emitOffsetForBlockedLayout(blockedLayout, shape);
if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.isVolta())
return emitOffsetForMmaLayoutV1(mmaLayout, shape);
if (mmaLayout.isAmpere())
return emitOffsetForMmaLayoutV2(mmaLayout, shape);
}
llvm_unreachable("unsupported emitOffsetForLayout");
}
// -----------------------------------------------------------------------
// Emit indices
// -----------------------------------------------------------------------
SmallVector<SmallVector<Value>> emitIndices(Location loc,
ConversionPatternRewriter &b,
const Attribute &layout,
ArrayRef<int64_t> shape) const {
IndexCacheKeyT key(layout, llvm::to_vector(shape));
auto cache = indexCacheInfo.indexCache;
assert(cache && "indexCache is nullptr");
auto insertPt = indexCacheInfo.indexInsertPoint;
if (cache->count(key) > 0) {
return cache->lookup(key);
} else {
ConversionPatternRewriter::InsertionGuard guard(b);
restoreInsertionPointIfSet(insertPt, b);
SmallVector<SmallVector<Value>> result;
if (auto blocked = layout.dyn_cast<BlockedEncodingAttr>()) {
result = emitIndicesForDistributedLayout(loc, b, blocked, shape);
} else if (auto mma = layout.dyn_cast<MmaEncodingAttr>()) {
result = emitIndicesForDistributedLayout(loc, b, mma, shape);
} else if (auto slice = layout.dyn_cast<SliceEncodingAttr>()) {
result = emitIndicesForSliceLayout(loc, b, slice, shape);
} else {
llvm_unreachable(
"emitIndices for layouts other than blocked & slice not "
"implemented yet");
}
cache->insert(std::make_pair(key, result));
*insertPt = b.saveInsertionPoint();
return result;
}
}
private:
void restoreInsertionPointIfSet(OpBuilder::InsertPoint *insertPt,
ConversionPatternRewriter &rewriter) const {
if (insertPt->isSet()) {
rewriter.restoreInsertionPoint(*insertPt);
} else {
auto func =
rewriter.getInsertionPoint()->getParentOfType<LLVM::LLVMFuncOp>();
rewriter.setInsertionPointToStart(&func.getBody().front());
}
}
// -----------------------------------------------------------------------
// Blocked layout indices
// -----------------------------------------------------------------------
@@ -411,38 +571,6 @@ public:
return ret;
}
// -----------------------------------------------------------------------
// Get offsets / indices for any layout
// -----------------------------------------------------------------------
SmallVector<Value> emitBaseIndexForLayout(Location loc,
ConversionPatternRewriter &rewriter,
const Attribute &layout,
ArrayRef<int64_t> shape) const {
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>())
return emitBaseIndexForBlockedLayout(loc, rewriter, blockedLayout, shape);
if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.isVolta())
return emitBaseIndexForMmaLayoutV1(loc, rewriter, mmaLayout, shape);
if (mmaLayout.isAmpere())
return emitBaseIndexForMmaLayoutV2(loc, rewriter, mmaLayout, shape);
}
llvm_unreachable("unsupported emitBaseIndexForLayout");
}
SmallVector<SmallVector<unsigned>>
emitOffsetForLayout(const Attribute &layout, ArrayRef<int64_t> shape) const {
if (auto blockedLayout = layout.dyn_cast<BlockedEncodingAttr>())
return emitOffsetForBlockedLayout(blockedLayout, shape);
if (auto mmaLayout = layout.dyn_cast<MmaEncodingAttr>()) {
if (mmaLayout.isVolta())
return emitOffsetForMmaLayoutV1(mmaLayout, shape);
if (mmaLayout.isAmpere())
return emitOffsetForMmaLayoutV2(mmaLayout, shape);
}
llvm_unreachable("unsupported emitOffsetForLayout");
}
// Emit indices calculation within each ConversionPattern, and returns a
// [elemsPerThread X rank] index matrix.
@@ -470,22 +598,6 @@ public:
return multiDimIdx;
}
struct SmallVectorKeyInfo {
static unsigned getHashValue(const SmallVector<unsigned> &key) {
return llvm::hash_combine_range(key.begin(), key.end());
}
static bool isEqual(const SmallVector<unsigned> &lhs,
const SmallVector<unsigned> &rhs) {
return lhs == rhs;
}
static SmallVector<unsigned> getEmptyKey() {
return SmallVector<unsigned>();
}
static SmallVector<unsigned> getTombstoneKey() {
return {std::numeric_limits<unsigned>::max()};
}
};
SmallVector<SmallVector<Value>>
emitIndicesForSliceLayout(Location loc, ConversionPatternRewriter &rewriter,
const SliceEncodingAttr &sliceLayout,
@@ -505,46 +617,45 @@ public:
return resultIndices;
}
// -----------------------------------------------------------------------
// Emit indices
// -----------------------------------------------------------------------
SmallVector<SmallVector<Value>> emitIndices(Location loc,
ConversionPatternRewriter &b,
const Attribute &layout,
ArrayRef<int64_t> shape) const {
if (auto blocked = layout.dyn_cast<BlockedEncodingAttr>()) {
return emitIndicesForDistributedLayout(loc, b, blocked, shape);
} else if (auto mma = layout.dyn_cast<MmaEncodingAttr>()) {
return emitIndicesForDistributedLayout(loc, b, mma, shape);
} else if (auto slice = layout.dyn_cast<SliceEncodingAttr>()) {
return emitIndicesForSliceLayout(loc, b, slice, shape);
} else {
assert(0 && "emitIndices for layouts other than blocked & slice not "
"implemented yet");
return {};
}
}
// -----------------------------------------------------------------------
// Shared memory utilities
// -----------------------------------------------------------------------
template <typename T>
Value getSharedMemoryBase(Location loc, ConversionPatternRewriter &rewriter,
T value) const {
auto ptrTy = LLVM::LLVMPointerType::get(
this->getTypeConverter()->convertType(rewriter.getI8Type()), 3);
auto bufferId = allocation->getBufferId(value);
assert(bufferId != Allocation::InvalidBufferId && "BufferId not found");
size_t offset = allocation->getOffset(bufferId);
Value offVal = idx_val(offset);
Value base = gep(ptrTy, smem, offVal);
return base;
}
protected:
LLVMTypeConverter *converter;
const Allocation *allocation;
Value smem;
IndexCacheInfo indexCacheInfo;
};
template <typename SourceOp>
class ConvertTritonGPUOpToLLVMPattern
: public ConvertOpToLLVMPattern<SourceOp>,
public ConvertTritonGPUOpToLLVMPatternBase {
public:
using OpAdaptor = typename SourceOp::Adaptor;
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit),
ConvertTritonGPUOpToLLVMPatternBase(typeConverter) {}
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit),
ConvertTritonGPUOpToLLVMPatternBase(typeConverter, allocation, smem) {}
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
const Allocation *allocation,
Value smem,
IndexCacheInfo indexCacheInfo,
PatternBenefit benefit = 1)
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit),
ConvertTritonGPUOpToLLVMPatternBase(typeConverter, allocation, smem,
indexCacheInfo) {}
protected:
LLVMTypeConverter *getTypeConverter() const {
return ((ConvertTritonGPUOpToLLVMPatternBase *)this)->getTypeConverter();
}
};
#endif