Merge triton-mlir
branch - Complete rewrite of the backend from scratch (#1004)
This PR merges the `triton-mlir` branch, in which we have been quietly rewriting the Triton backend from scratch to increase maintainability, stability and ultimately performance. Changes to the runtime are minimal, and this new version aims to remain backward-compatible with the previous commit. The legacy backend is now officially deprecated, but can still be accessed via the `legacy-backend` tag. Co-authored-by: Keren Zhou <kerenzhou@openai.com> Co-authored-by: Yan Chunwei <yanchunwei@outlook.com> Co-authored-by: goostavz <109190422+goostavz@users.noreply.github.com> Co-authored-by: Shintaro Iwasaki <siwasaki@fb.com> Co-authored-by: Yan Da <dyanab@connect.ust.hk> Co-authored-by: Jun Yang <yangjunpro@gmail.com> Co-authored-by: Ian Bearman <ianb@microsoft.com> Co-authored-by: Jason Ansel <jansel@jansel.net> Co-authored-by: Qingyi Liu <qingyil@nvidia.com> Co-authored-by: ben-zhang-609 <110140741+ben-zhang-609@users.noreply.github.com> Co-authored-by: Chenggang Zhao <lyricz@yeah.net> Co-authored-by: ben-zhang-609 <benzh609@gmail.com> Co-authored-by: dongdongl <dongdongl@nvidia.com>
This commit is contained in:
311
lib/Conversion/TritonGPUToLLVM/DotOpToLLVM.cpp
Normal file
311
lib/Conversion/TritonGPUToLLVM/DotOpToLLVM.cpp
Normal file
@@ -0,0 +1,311 @@
|
||||
#include "DotOpToLLVM.h"
|
||||
#include "DotOpHelpers.h"
|
||||
#include "Utility.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::triton;
|
||||
|
||||
using ::mlir::LLVM::DotOpFMAConversionHelper;
|
||||
using ::mlir::LLVM::DotOpMmaV1ConversionHelper;
|
||||
using ::mlir::LLVM::getElementsFromStruct;
|
||||
using ::mlir::LLVM::getStructFromElements;
|
||||
using ::mlir::LLVM::MMA16816ConversionHelper;
|
||||
using ::mlir::triton::gpu::DotOperandEncodingAttr;
|
||||
using ::mlir::triton::gpu::MmaEncodingAttr;
|
||||
|
||||
struct DotOpConversion : public ConvertTritonGPUOpToLLVMPattern<triton::DotOp> {
|
||||
using ConvertTritonGPUOpToLLVMPattern<
|
||||
triton::DotOp>::ConvertTritonGPUOpToLLVMPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(triton::DotOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// D = A * B + C
|
||||
Value A = op.a();
|
||||
Value D = op.getResult();
|
||||
|
||||
// Here we assume the DotOp's operands always comes from shared memory.
|
||||
auto AShape = A.getType().cast<RankedTensorType>().getShape();
|
||||
size_t reduceAxis = 1;
|
||||
unsigned K = AShape[reduceAxis];
|
||||
bool isOuter = K == 1;
|
||||
|
||||
MmaEncodingAttr mmaLayout = D.getType()
|
||||
.cast<RankedTensorType>()
|
||||
.getEncoding()
|
||||
.dyn_cast<MmaEncodingAttr>();
|
||||
if (!isOuter && mmaLayout && supportMMA(op, mmaLayout.getVersionMajor())) {
|
||||
if (mmaLayout.isVolta())
|
||||
return convertMMA884(op, adaptor, rewriter);
|
||||
if (mmaLayout.isAmpere())
|
||||
return convertMMA16816(op, adaptor, rewriter);
|
||||
|
||||
llvm::report_fatal_error(
|
||||
"Unsupported MMA kind found when converting DotOp to LLVM.");
|
||||
}
|
||||
|
||||
if (D.getType()
|
||||
.cast<RankedTensorType>()
|
||||
.getEncoding()
|
||||
.isa<BlockedEncodingAttr>())
|
||||
return convertFMADot(op, adaptor, rewriter);
|
||||
|
||||
llvm::report_fatal_error(
|
||||
"Unsupported DotOp found when converting TritonGPU to LLVM.");
|
||||
}
|
||||
|
||||
private:
|
||||
// Convert to mma.m16n8k16
|
||||
LogicalResult convertMMA16816(triton::DotOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
auto loc = op.getLoc();
|
||||
auto mmaLayout = op.getResult()
|
||||
.getType()
|
||||
.cast<RankedTensorType>()
|
||||
.getEncoding()
|
||||
.cast<MmaEncodingAttr>();
|
||||
|
||||
Value A = op.a();
|
||||
Value B = op.b();
|
||||
Value C = op.c();
|
||||
|
||||
MMA16816ConversionHelper mmaHelper(A.getType(), mmaLayout,
|
||||
getThreadId(rewriter, loc), rewriter,
|
||||
getTypeConverter(), loc);
|
||||
|
||||
auto ATensorTy = A.getType().cast<RankedTensorType>();
|
||||
auto BTensorTy = B.getType().cast<RankedTensorType>();
|
||||
|
||||
assert(ATensorTy.getEncoding().isa<DotOperandEncodingAttr>() &&
|
||||
BTensorTy.getEncoding().isa<DotOperandEncodingAttr>() &&
|
||||
"Both $a and %b should be DotOperand layout.");
|
||||
|
||||
Value loadedA, loadedB, loadedC;
|
||||
loadedA = adaptor.a();
|
||||
loadedB = adaptor.b();
|
||||
loadedC = mmaHelper.loadC(op.c(), adaptor.c());
|
||||
|
||||
return mmaHelper.convertDot(A, B, C, op.d(), loadedA, loadedB, loadedC, op,
|
||||
adaptor);
|
||||
}
|
||||
/// Convert to mma.m8n8k4
|
||||
LogicalResult convertMMA884(triton::DotOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
auto *ctx = op.getContext();
|
||||
auto loc = op.getLoc();
|
||||
|
||||
Value A = op.a();
|
||||
Value B = op.b();
|
||||
Value D = op.getResult();
|
||||
auto mmaLayout = D.getType()
|
||||
.cast<RankedTensorType>()
|
||||
.getEncoding()
|
||||
.cast<MmaEncodingAttr>();
|
||||
auto ALayout = A.getType()
|
||||
.cast<RankedTensorType>()
|
||||
.getEncoding()
|
||||
.cast<DotOperandEncodingAttr>();
|
||||
auto BLayout = B.getType()
|
||||
.cast<RankedTensorType>()
|
||||
.getEncoding()
|
||||
.cast<DotOperandEncodingAttr>();
|
||||
|
||||
auto ATensorTy = A.getType().cast<RankedTensorType>();
|
||||
auto BTensorTy = B.getType().cast<RankedTensorType>();
|
||||
auto DTensorTy = D.getType().cast<RankedTensorType>();
|
||||
auto AShape = ATensorTy.getShape();
|
||||
auto BShape = BTensorTy.getShape();
|
||||
auto DShape = DTensorTy.getShape();
|
||||
auto wpt = mmaLayout.getWarpsPerCTA();
|
||||
|
||||
bool isARow = ALayout.getIsMMAv1Row().cast<BoolAttr>().getValue();
|
||||
bool isBRow = BLayout.getIsMMAv1Row().cast<BoolAttr>().getValue();
|
||||
|
||||
DotOpMmaV1ConversionHelper helper(mmaLayout);
|
||||
|
||||
unsigned numM = helper.getNumM(AShape, isARow);
|
||||
unsigned numN = helper.getNumN(BShape, isBRow);
|
||||
unsigned NK = AShape[1];
|
||||
|
||||
auto has = helper.extractLoadedOperand(adaptor.a(), NK, rewriter);
|
||||
auto hbs = helper.extractLoadedOperand(adaptor.b(), NK, rewriter);
|
||||
|
||||
// Initialize accumulators with external values, the acc holds the
|
||||
// accumulator value that is shared between the MMA instructions inside a
|
||||
// DotOp, we can call the order of the values the accumulator-internal
|
||||
// order.
|
||||
SmallVector<Value> acc = getElementsFromStruct(loc, adaptor.c(), rewriter);
|
||||
size_t resSize = acc.size();
|
||||
|
||||
// The resVals holds the final result of the DotOp.
|
||||
// NOTE The current order of resVals is different from acc, we call it the
|
||||
// accumulator-external order. and
|
||||
SmallVector<Value> resVals(resSize);
|
||||
|
||||
auto getIdx = [&](int m, int n) {
|
||||
std::vector<size_t> idx{{
|
||||
(m * 2 + 0) + (n * 4 + 0) * numM, // row0
|
||||
(m * 2 + 0) + (n * 4 + 1) * numM,
|
||||
(m * 2 + 1) + (n * 4 + 0) * numM, // row1
|
||||
(m * 2 + 1) + (n * 4 + 1) * numM,
|
||||
(m * 2 + 0) + (n * 4 + 2) * numM, // row2
|
||||
(m * 2 + 0) + (n * 4 + 3) * numM,
|
||||
(m * 2 + 1) + (n * 4 + 2) * numM, // row3
|
||||
(m * 2 + 1) + (n * 4 + 3) * numM,
|
||||
}};
|
||||
return idx;
|
||||
};
|
||||
|
||||
{ // convert the acc's value from accumuator-external order to
|
||||
// accumulator-internal order.
|
||||
SmallVector<Value> accInit(acc.size());
|
||||
|
||||
for (unsigned m = 0; m < numM / 2; ++m)
|
||||
for (unsigned n = 0; n < numN / 2; ++n) {
|
||||
auto idx = getIdx(m, n);
|
||||
for (unsigned i = 0; i < 8; ++i)
|
||||
accInit[idx[i]] = acc[(m * numN / 2 + n) * 8 + i];
|
||||
}
|
||||
|
||||
acc = accInit;
|
||||
}
|
||||
|
||||
auto callMMA = [&](unsigned m, unsigned n, unsigned k) {
|
||||
auto ha = has.at({m, k});
|
||||
auto hb = hbs.at({n, k});
|
||||
|
||||
PTXBuilder builder;
|
||||
auto idx = getIdx(m, n);
|
||||
|
||||
auto *resOprs = builder.newListOperand(8, "=f");
|
||||
auto *AOprs = builder.newListOperand({
|
||||
{ha.first, "r"},
|
||||
{ha.second, "r"},
|
||||
});
|
||||
|
||||
auto *BOprs = builder.newListOperand({
|
||||
{hb.first, "r"},
|
||||
{hb.second, "r"},
|
||||
});
|
||||
auto *COprs = builder.newListOperand();
|
||||
for (int i = 0; i < 8; ++i)
|
||||
COprs->listAppend(builder.newOperand(acc[idx[i]], std::to_string(i)));
|
||||
|
||||
auto mma = builder.create("mma.sync.aligned.m8n8k4")
|
||||
->o(isARow ? "row" : "col")
|
||||
.o(isBRow ? "row" : "col")
|
||||
.o("f32.f16.f16.f32");
|
||||
|
||||
mma(resOprs, AOprs, BOprs, COprs);
|
||||
|
||||
Value res =
|
||||
builder.launch(rewriter, loc, helper.getMmaRetType(ATensorTy));
|
||||
|
||||
auto getIntAttr = [&](int v) {
|
||||
return ArrayAttr::get(ctx, {IntegerAttr::get(i32_ty, v)});
|
||||
};
|
||||
|
||||
for (unsigned i = 0; i < 8; i++) {
|
||||
Value elem = extract_val(f32_ty, res, getIntAttr(i));
|
||||
acc[idx[i]] = elem;
|
||||
resVals[(m * numN / 2 + n) * 8 + i] = elem;
|
||||
}
|
||||
};
|
||||
|
||||
for (unsigned k = 0; k < NK; k += 4)
|
||||
for (unsigned m = 0; m < numM / 2; ++m)
|
||||
for (unsigned n = 0; n < numN / 2; ++n) {
|
||||
callMMA(m, n, k);
|
||||
}
|
||||
|
||||
Type structTy = LLVM::LLVMStructType::getLiteral(
|
||||
ctx, SmallVector<Type>(resSize, type::f32Ty(ctx)));
|
||||
Value res = getStructFromElements(loc, resVals, rewriter, structTy);
|
||||
rewriter.replaceOp(op, res);
|
||||
return success();
|
||||
}
|
||||
|
||||
LogicalResult convertFMADot(triton::DotOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
auto *ctx = rewriter.getContext();
|
||||
auto loc = op.getLoc();
|
||||
auto threadId = getThreadId(rewriter, loc);
|
||||
|
||||
auto A = op.a();
|
||||
auto B = op.b();
|
||||
auto C = op.c();
|
||||
auto D = op.getResult();
|
||||
|
||||
auto aTensorTy = A.getType().cast<RankedTensorType>();
|
||||
auto bTensorTy = B.getType().cast<RankedTensorType>();
|
||||
auto cTensorTy = C.getType().cast<RankedTensorType>();
|
||||
auto dTensorTy = D.getType().cast<RankedTensorType>();
|
||||
|
||||
auto aShape = aTensorTy.getShape();
|
||||
auto bShape = bTensorTy.getShape();
|
||||
auto cShape = cTensorTy.getShape();
|
||||
|
||||
BlockedEncodingAttr dLayout =
|
||||
dTensorTy.getEncoding().cast<BlockedEncodingAttr>();
|
||||
auto order = dLayout.getOrder();
|
||||
auto cc = getElementsFromStruct(loc, adaptor.c(), rewriter);
|
||||
|
||||
DotOpFMAConversionHelper helper(dLayout);
|
||||
Value llA = adaptor.a();
|
||||
Value llB = adaptor.b();
|
||||
|
||||
auto sizePerThread = getSizePerThread(dLayout);
|
||||
auto shapePerCTA = getShapePerCTA(dLayout);
|
||||
|
||||
int K = aShape[1];
|
||||
int M = aShape[0];
|
||||
int N = bShape[1];
|
||||
|
||||
int mShapePerCTA =
|
||||
order[0] == 1 ? shapePerCTA[order[1]] : shapePerCTA[order[0]];
|
||||
int mSizePerThread =
|
||||
order[0] == 1 ? sizePerThread[order[1]] : sizePerThread[order[0]];
|
||||
int nShapePerCTA =
|
||||
order[0] == 0 ? shapePerCTA[order[1]] : shapePerCTA[order[0]];
|
||||
int nSizePerThread =
|
||||
order[0] == 0 ? sizePerThread[order[1]] : sizePerThread[order[0]];
|
||||
|
||||
auto has = helper.getValueTableFromStruct(llA, K, M, mShapePerCTA,
|
||||
mSizePerThread, rewriter, loc);
|
||||
auto hbs = helper.getValueTableFromStruct(llB, K, N, nShapePerCTA,
|
||||
nSizePerThread, rewriter, loc);
|
||||
|
||||
SmallVector<Value> ret = cc;
|
||||
bool isCRow = order[0] == 1;
|
||||
|
||||
for (unsigned k = 0; k < K; k++) {
|
||||
for (unsigned m = 0; m < M; m += mShapePerCTA)
|
||||
for (unsigned n = 0; n < N; n += nShapePerCTA)
|
||||
for (unsigned mm = 0; mm < mSizePerThread; ++mm)
|
||||
for (unsigned nn = 0; nn < nSizePerThread; ++nn) {
|
||||
int mIdx = m / mShapePerCTA * mSizePerThread + mm;
|
||||
int nIdx = n / nShapePerCTA * nSizePerThread + nn;
|
||||
|
||||
int z = isCRow ? mIdx * N / nShapePerCTA * mSizePerThread + nIdx
|
||||
: nIdx * M / mShapePerCTA * nSizePerThread + mIdx;
|
||||
ret[z] = rewriter.create<LLVM::FMulAddOp>(
|
||||
loc, has[{m + mm, k}], hbs[{n + nn, k}], ret[z]);
|
||||
}
|
||||
}
|
||||
|
||||
auto res = getStructFromElements(
|
||||
loc, ret, rewriter,
|
||||
struct_ty(SmallVector<Type>(ret.size(), ret[0].getType())));
|
||||
rewriter.replaceOp(op, res);
|
||||
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
void populateDotOpToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
|
||||
RewritePatternSet &patterns, int numWarps,
|
||||
AxisInfoAnalysis &axisInfoAnalysis,
|
||||
const Allocation *allocation, Value smem,
|
||||
PatternBenefit benefit) {
|
||||
patterns.add<DotOpConversion>(typeConverter, allocation, smem, benefit);
|
||||
}
|
Reference in New Issue
Block a user