Merge triton-mlir
branch - Complete rewrite of the backend from scratch (#1004)
This PR merges the `triton-mlir` branch, in which we have been quietly rewriting the Triton backend from scratch to increase maintainability, stability and ultimately performance. Changes to the runtime are minimal, and this new version aims to remain backward-compatible with the previous commit. The legacy backend is now officially deprecated, but can still be accessed via the `legacy-backend` tag. Co-authored-by: Keren Zhou <kerenzhou@openai.com> Co-authored-by: Yan Chunwei <yanchunwei@outlook.com> Co-authored-by: goostavz <109190422+goostavz@users.noreply.github.com> Co-authored-by: Shintaro Iwasaki <siwasaki@fb.com> Co-authored-by: Yan Da <dyanab@connect.ust.hk> Co-authored-by: Jun Yang <yangjunpro@gmail.com> Co-authored-by: Ian Bearman <ianb@microsoft.com> Co-authored-by: Jason Ansel <jansel@jansel.net> Co-authored-by: Qingyi Liu <qingyil@nvidia.com> Co-authored-by: ben-zhang-609 <110140741+ben-zhang-609@users.noreply.github.com> Co-authored-by: Chenggang Zhao <lyricz@yeah.net> Co-authored-by: ben-zhang-609 <benzh609@gmail.com> Co-authored-by: dongdongl <dongdongl@nvidia.com>
This commit is contained in:
21
lib/Dialect/TritonGPU/Transforms/CMakeLists.txt
Normal file
21
lib/Dialect/TritonGPU/Transforms/CMakeLists.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
set(LLVM_TARGET_DEFINITIONS Combine.td)
|
||||
mlir_tablegen(TritonGPUCombine.inc -gen-rewriters)
|
||||
add_public_tablegen_target(TritonGPUCombineIncGen)
|
||||
|
||||
add_mlir_dialect_library(TritonGPUTransforms
|
||||
Coalesce.cpp
|
||||
CanonicalizeLoops.cpp
|
||||
Combine.cpp
|
||||
Pipeline.cpp
|
||||
Prefetch.cpp
|
||||
TritonGPUConversion.cpp
|
||||
|
||||
DEPENDS
|
||||
TritonGPUTransformsIncGen
|
||||
TritonGPUCombineIncGen
|
||||
|
||||
LINK_LIBS PUBLIC
|
||||
TritonIR
|
||||
TritonGPUIR
|
||||
MLIRTransformUtils
|
||||
)
|
55
lib/Dialect/TritonGPU/Transforms/CanonicalizeLoops.cpp
Normal file
55
lib/Dialect/TritonGPU/Transforms/CanonicalizeLoops.cpp
Normal file
@@ -0,0 +1,55 @@
|
||||
#include "mlir/Analysis/SliceAnalysis.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::triton;
|
||||
|
||||
#define GEN_PASS_CLASSES
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
||||
|
||||
namespace {
|
||||
|
||||
struct CanonicalizePass
|
||||
: public TritonGPUCanonicalizeLoopsBase<CanonicalizePass> {
|
||||
CanonicalizePass() = default;
|
||||
|
||||
void runOnOperation() override {
|
||||
|
||||
// Canonicalize pass may have created dead code that
|
||||
// standard scf.for canonicalization cannot handle
|
||||
// as of LLVM 14. For example, the iteration arguments
|
||||
// for the pointer of the synchronous loads that are
|
||||
// discarded.
|
||||
// The following piece of code is a workaround to
|
||||
// very crudely remove dead code, by making an iteration
|
||||
// argument yield itself if it is not used to create
|
||||
// side effects anywhere.
|
||||
getOperation()->walk([&](scf::ForOp forOp) -> void {
|
||||
for (size_t i = 0; i < forOp.getNumResults(); ++i) {
|
||||
// condition 1: no other iter arguments depend on it
|
||||
SetVector<Operation *> fwdSlice;
|
||||
mlir::getForwardSlice(forOp.getRegionIterArgs()[i], &fwdSlice);
|
||||
Operation *yieldOp = forOp.getBody()->getTerminator();
|
||||
bool noOtherDependency = std::all_of(
|
||||
yieldOp->operand_begin(), yieldOp->operand_end(), [&](Value arg) {
|
||||
return arg == yieldOp->getOperand(i) ||
|
||||
!fwdSlice.contains(arg.getDefiningOp());
|
||||
});
|
||||
// condition 2: final value is not used after the loop
|
||||
auto retVal = forOp.getResult(i);
|
||||
bool noUserAfterLoop = retVal.getUsers().empty();
|
||||
// yielding the region iter arg will cause loop canonicalization
|
||||
// to clean up the dead code
|
||||
if (noOtherDependency && noUserAfterLoop) {
|
||||
yieldOp->setOperand(i, forOp.getRegionIterArgs()[i]);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
std::unique_ptr<Pass> mlir::createTritonGPUCanonicalizeLoopsPass() {
|
||||
return std::make_unique<CanonicalizePass>();
|
||||
}
|
139
lib/Dialect/TritonGPU/Transforms/Coalesce.cpp
Normal file
139
lib/Dialect/TritonGPU/Transforms/Coalesce.cpp
Normal file
@@ -0,0 +1,139 @@
|
||||
#include "triton/Analysis/AxisInfo.h"
|
||||
#include "triton/Analysis/Utility.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
||||
#include <numeric>
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::triton;
|
||||
|
||||
#define GEN_PASS_CLASSES
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
||||
|
||||
struct CoalescePass : public TritonGPUCoalesceBase<CoalescePass> {
|
||||
Attribute getCoalescedEncoding(AxisInfoAnalysis &axisInfo, Value ptr,
|
||||
int numWarps) {
|
||||
auto origType = ptr.getType().cast<RankedTensorType>();
|
||||
// Get the shape of the tensor.
|
||||
size_t rank = origType.getRank();
|
||||
AxisInfo info = axisInfo.lookupLatticeElement(ptr)->getValue();
|
||||
// Layout order in decreasing order of contiguity
|
||||
SmallVector<unsigned, 4> order(rank);
|
||||
std::iota(order.begin(), order.end(), 0);
|
||||
auto contiguity = info.getContiguity();
|
||||
std::sort(order.begin(), order.end(), [&](unsigned x, unsigned y) {
|
||||
return contiguity[x] > contiguity[y];
|
||||
});
|
||||
|
||||
int numElems = product(origType.getShape());
|
||||
int numThreads = numWarps * 32;
|
||||
int numElemsPerThread = std::max(numElems / numThreads, 1);
|
||||
|
||||
// Thread tile size depends on memory alignment
|
||||
SmallVector<unsigned, 4> sizePerThread(rank, 1);
|
||||
PointerType ptrType = origType.getElementType().cast<PointerType>();
|
||||
auto pointeeType = ptrType.getPointeeType();
|
||||
unsigned numBits = pointeeType.isa<triton::Float8Type>()
|
||||
? 8
|
||||
: pointeeType.getIntOrFloatBitWidth();
|
||||
unsigned maxMultiple = info.getDivisibility(order[0]);
|
||||
unsigned maxContig = info.getContiguity(order[0]);
|
||||
unsigned alignment = std::min(maxMultiple, maxContig);
|
||||
unsigned perThread = std::min(alignment, 128 / numBits);
|
||||
sizePerThread[order[0]] = std::min<int>(perThread, numElemsPerThread);
|
||||
|
||||
SmallVector<unsigned> dims(rank);
|
||||
std::iota(dims.begin(), dims.end(), 0);
|
||||
// create encoding
|
||||
Attribute encoding = triton::gpu::BlockedEncodingAttr::get(
|
||||
&getContext(), origType.getShape(), sizePerThread, order, numWarps);
|
||||
return encoding;
|
||||
}
|
||||
|
||||
std::function<Type(Type)> getTypeConverter(AxisInfoAnalysis &axisInfo,
|
||||
Value ptr, int numWarps) {
|
||||
Attribute encoding = getCoalescedEncoding(axisInfo, ptr, numWarps);
|
||||
return [encoding](Type _type) {
|
||||
RankedTensorType type = _type.cast<RankedTensorType>();
|
||||
return RankedTensorType::get(type.getShape(), type.getElementType(),
|
||||
encoding);
|
||||
};
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void coalesceOp(AxisInfoAnalysis &axisInfo, Operation *op, Value ptr,
|
||||
OpBuilder builder) {
|
||||
RankedTensorType ty = ptr.getType().template dyn_cast<RankedTensorType>();
|
||||
if (!ty)
|
||||
return;
|
||||
auto mod = op->getParentOfType<ModuleOp>();
|
||||
int numWarps = triton::gpu::TritonGPUDialect::getNumWarps(mod);
|
||||
|
||||
AxisInfo info = axisInfo.lookupLatticeElement(ptr)->getValue();
|
||||
auto convertType = getTypeConverter(axisInfo, ptr, numWarps);
|
||||
// convert operands
|
||||
SmallVector<Value, 4> newArgs;
|
||||
for (auto v : op->getOperands()) {
|
||||
auto vTy = v.getType().dyn_cast<RankedTensorType>();
|
||||
if (vTy && !vTy.getEncoding().isa<triton::gpu::SharedEncodingAttr>())
|
||||
newArgs.push_back(builder.create<triton::gpu::ConvertLayoutOp>(
|
||||
op->getLoc(), convertType(v.getType()), v));
|
||||
else
|
||||
newArgs.push_back(v);
|
||||
}
|
||||
// convert output types
|
||||
SmallVector<Type, 4> newTypes;
|
||||
for (auto t : op->getResultTypes()) {
|
||||
bool is_async = std::is_same<T, triton::gpu::InsertSliceAsyncOp>::value;
|
||||
newTypes.push_back(is_async ? t : convertType(t));
|
||||
}
|
||||
// construct new op with the new encoding
|
||||
Operation *newOp =
|
||||
builder.create<T>(op->getLoc(), newTypes, newArgs, op->getAttrs());
|
||||
// cast the results back to the original layout
|
||||
for (size_t i = 0; i < op->getNumResults(); i++) {
|
||||
Value newResult = newOp->getResult(i);
|
||||
if (newTypes[i] != op->getResultTypes()[i]) {
|
||||
newResult = builder.create<triton::gpu::ConvertLayoutOp>(
|
||||
op->getLoc(), op->getResult(i).getType(), newResult);
|
||||
}
|
||||
op->getResult(i).replaceAllUsesWith(newResult);
|
||||
}
|
||||
op->erase();
|
||||
}
|
||||
|
||||
void runOnOperation() override {
|
||||
Operation *op = getOperation();
|
||||
// Run axis info analysis
|
||||
AxisInfoAnalysis axisInfo(&getContext());
|
||||
axisInfo.run(op);
|
||||
OpBuilder builder(op);
|
||||
|
||||
// For each memory op that has a layout L1:
|
||||
// 1. Create a coalesced memory layout L2 of the pointer operands
|
||||
// 2. Convert all operands from layout L1 to layout L2
|
||||
// 3. Create a new memory op that consumes these operands and
|
||||
// produces a tensor with layout L2
|
||||
// 4. Convert the output of this new memory op back to L1
|
||||
// 5. Replace all the uses of the original memory op by the new one
|
||||
op->walk([&](Operation *curr) {
|
||||
OpBuilder::InsertionGuard g(builder);
|
||||
builder.setInsertionPoint(curr);
|
||||
if (auto load = dyn_cast<triton::LoadOp>(curr))
|
||||
coalesceOp<triton::LoadOp>(axisInfo, curr, load.ptr(), builder);
|
||||
if (auto op = dyn_cast<triton::AtomicRMWOp>(curr))
|
||||
coalesceOp<triton::AtomicRMWOp>(axisInfo, curr, op.ptr(), builder);
|
||||
if (auto op = dyn_cast<triton::AtomicCASOp>(curr))
|
||||
coalesceOp<triton::AtomicCASOp>(axisInfo, curr, op.ptr(), builder);
|
||||
if (auto load = dyn_cast<triton::gpu::InsertSliceAsyncOp>(curr))
|
||||
coalesceOp<triton::gpu::InsertSliceAsyncOp>(axisInfo, curr, load.src(),
|
||||
builder);
|
||||
if (auto store = dyn_cast<triton::StoreOp>(curr))
|
||||
coalesceOp<triton::StoreOp>(axisInfo, curr, store.ptr(), builder);
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<Pass> mlir::createTritonGPUCoalescePass() {
|
||||
return std::make_unique<CoalescePass>();
|
||||
}
|
1243
lib/Dialect/TritonGPU/Transforms/Combine.cpp
Normal file
1243
lib/Dialect/TritonGPU/Transforms/Combine.cpp
Normal file
File diff suppressed because it is too large
Load Diff
7
lib/Dialect/TritonGPU/Transforms/Combine.td
Normal file
7
lib/Dialect/TritonGPU/Transforms/Combine.td
Normal file
@@ -0,0 +1,7 @@
|
||||
#ifndef TRITONGPU_PATTERNS
|
||||
#define TRITONGPU_PATTERNS
|
||||
|
||||
include "triton/Dialect/TritonGPU/IR/TritonGPUOps.td"
|
||||
include "triton/Dialect/Triton/IR/TritonOps.td"
|
||||
|
||||
#endif
|
656
lib/Dialect/TritonGPU/Transforms/Pipeline.cpp
Normal file
656
lib/Dialect/TritonGPU/Transforms/Pipeline.cpp
Normal file
@@ -0,0 +1,656 @@
|
||||
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||||
#include "mlir/IR/BlockAndValueMapping.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements loop software pipelining
|
||||
// The implementation here is inspired by the pipeline pass in Triton (-v2.0)
|
||||
// and SCF's LoopPipelining.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
using namespace mlir;
|
||||
namespace ttg = triton::gpu;
|
||||
|
||||
#define GEN_PASS_CLASSES
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
||||
|
||||
static Type getI1SameShape(Value v) {
|
||||
Type vType = v.getType();
|
||||
auto i1Type = IntegerType::get(vType.getContext(), 1);
|
||||
auto tensorType = vType.cast<RankedTensorType>();
|
||||
return RankedTensorType::get(tensorType.getShape(), i1Type,
|
||||
tensorType.getEncoding());
|
||||
}
|
||||
|
||||
#define int_attr(num) builder.getI64IntegerAttr(num)
|
||||
|
||||
namespace {
|
||||
|
||||
class LoopPipeliner {
|
||||
/// Cache forOp we are working on
|
||||
scf::ForOp forOp;
|
||||
|
||||
/// Cache YieldOp for this forOp
|
||||
scf::YieldOp yieldOp;
|
||||
|
||||
/// Loads to be pipelined
|
||||
SetVector<Value> loads;
|
||||
/// The value that each load will be mapped to (after layout conversion)
|
||||
DenseMap<Value, Value> loadsMapping;
|
||||
/// load => buffer
|
||||
DenseMap<Value, Value> loadsBuffer;
|
||||
/// load => buffer type (with shared layout after swizzling)
|
||||
DenseMap<Value, RankedTensorType> loadsBufferType;
|
||||
/// load => buffer at stage N
|
||||
DenseMap<Value, SmallVector<Value>> loadStageBuffer;
|
||||
/// load => after extract
|
||||
DenseMap<Value, Value> loadsExtract;
|
||||
///
|
||||
Value pipelineIterIdx;
|
||||
///
|
||||
Value loopIterIdx;
|
||||
|
||||
/// Comments on numStages:
|
||||
/// [0, numStages-1) are in the prologue
|
||||
/// numStages-1 is appended after the loop body
|
||||
int numStages;
|
||||
|
||||
/// value (in loop) => value at stage N
|
||||
DenseMap<Value, SmallVector<Value>> valueMapping;
|
||||
|
||||
/// Block arguments that loads depend on
|
||||
DenseSet<BlockArgument> depArgs;
|
||||
|
||||
/// Operations (inside the loop body) that loads depend on
|
||||
DenseSet<Operation *> depOps;
|
||||
|
||||
/// collect values that v depends on and are defined inside the loop
|
||||
void collectDeps(Value v, int stages, DenseSet<Value> &deps);
|
||||
|
||||
void setValueMapping(Value origin, Value newValue, int stage);
|
||||
|
||||
Value lookupOrDefault(Value origin, int stage);
|
||||
|
||||
/// Returns a empty buffer of size <numStages, ...>
|
||||
ttg::AllocTensorOp allocateEmptyBuffer(Operation *op, OpBuilder &builder);
|
||||
|
||||
public:
|
||||
LoopPipeliner(scf::ForOp forOp, int numStages)
|
||||
: forOp(forOp), numStages(numStages) {
|
||||
// cache yieldOp
|
||||
yieldOp = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
|
||||
}
|
||||
|
||||
/// Collect loads to pipeline. Return success if we can pipeline this loop
|
||||
LogicalResult initialize();
|
||||
|
||||
/// Emit pipelined loads (before loop body)
|
||||
void emitPrologue();
|
||||
|
||||
/// emit pipelined loads (after loop body)
|
||||
void emitEpilogue();
|
||||
|
||||
/// create the new ForOp (add new args & insert prefetched ops)
|
||||
scf::ForOp createNewForOp();
|
||||
|
||||
friend struct PipelinePass;
|
||||
};
|
||||
|
||||
// helpers
|
||||
void LoopPipeliner::setValueMapping(Value origin, Value newValue, int stage) {
|
||||
if (valueMapping.find(origin) == valueMapping.end())
|
||||
valueMapping[origin] = SmallVector<Value>(numStages);
|
||||
valueMapping[origin][stage] = newValue;
|
||||
}
|
||||
|
||||
Value LoopPipeliner::lookupOrDefault(Value origin, int stage) {
|
||||
if (valueMapping.find(origin) == valueMapping.end())
|
||||
return origin;
|
||||
return valueMapping[origin][stage];
|
||||
}
|
||||
|
||||
void LoopPipeliner::collectDeps(Value v, int stages, DenseSet<Value> &deps) {
|
||||
// Loop-invariant value, skip
|
||||
if (v.getParentRegion() != &forOp.getLoopBody())
|
||||
return;
|
||||
|
||||
// Since we only need to peel the loop numStages-1 times, don't worry about
|
||||
// depends that are too far away
|
||||
if (stages < 0)
|
||||
return;
|
||||
|
||||
if (auto arg = v.dyn_cast<BlockArgument>()) {
|
||||
if (arg.getArgNumber() > 0) {
|
||||
// Skip the first arg (loop induction variable)
|
||||
// Otherwise the op idx is arg.getArgNumber()-1
|
||||
deps.insert(v);
|
||||
collectDeps(yieldOp->getOperand(arg.getArgNumber() - 1), stages - 1,
|
||||
deps);
|
||||
}
|
||||
} else { // value
|
||||
// v might be in deps, but we still need to visit v.
|
||||
// This is because v might depend on value in previous iterations
|
||||
deps.insert(v);
|
||||
for (Value op : v.getDefiningOp()->getOperands())
|
||||
collectDeps(op, stages, deps);
|
||||
}
|
||||
}
|
||||
|
||||
ttg::AllocTensorOp LoopPipeliner::allocateEmptyBuffer(Operation *op,
|
||||
OpBuilder &builder) {
|
||||
// Allocate a buffer for each pipelined tensor
|
||||
// shape: e.g. (numStages==4), <32x64xbf16> -> <4x32x64xbf16>
|
||||
Value convertLayout = loadsMapping[op->getResult(0)];
|
||||
if (auto tensorType = convertLayout.getType().dyn_cast<RankedTensorType>()) {
|
||||
return builder.create<ttg::AllocTensorOp>(
|
||||
convertLayout.getLoc(), loadsBufferType[op->getResult(0)]);
|
||||
}
|
||||
llvm_unreachable("Async copy's return should be of RankedTensorType");
|
||||
}
|
||||
|
||||
/// A load instruction can be pipelined if:
|
||||
/// - the load doesn't depend on any other loads (after loop peeling)
|
||||
/// - (?) this load is not a loop-invariant value (we should run LICM before
|
||||
/// this pass?)
|
||||
LogicalResult LoopPipeliner::initialize() {
|
||||
Block *loop = forOp.getBody();
|
||||
|
||||
// can we use forOp.walk(...) here?
|
||||
SmallVector<triton::LoadOp, 2> allLoads;
|
||||
for (Operation &op : *loop)
|
||||
if (auto loadOp = dyn_cast<triton::LoadOp>(&op))
|
||||
allLoads.push_back(loadOp);
|
||||
|
||||
// Early stop: no need to continue if there is no load in the loop.
|
||||
if (allLoads.empty())
|
||||
return failure();
|
||||
|
||||
// load => values that it depends on
|
||||
DenseMap<Value, DenseSet<Value>> loadDeps;
|
||||
for (triton::LoadOp loadOp : allLoads) {
|
||||
DenseSet<Value> deps;
|
||||
for (Value op : loadOp->getOperands())
|
||||
collectDeps(op, numStages - 1, deps);
|
||||
loadDeps[loadOp] = deps;
|
||||
}
|
||||
|
||||
// Don't pipeline loads that depend on other loads
|
||||
// (Because if a load depends on another load, this load needs to wait on the
|
||||
// other load in the prologue, which is against the point of the pipeline
|
||||
// pass)
|
||||
for (triton::LoadOp loadOp : allLoads) {
|
||||
bool isCandidate = true;
|
||||
for (triton::LoadOp other : allLoads) {
|
||||
if (loadDeps[loadOp].contains(other)) {
|
||||
isCandidate = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// We only pipeline loads that have one covert_layout (to dot_op) use
|
||||
// TODO: lift this constraint in the future
|
||||
if (isCandidate && loadOp.getResult().hasOneUse()) {
|
||||
isCandidate = false;
|
||||
Operation *use = *loadOp.getResult().getUsers().begin();
|
||||
if (auto convertLayout = llvm::dyn_cast<ttg::ConvertLayoutOp>(use)) {
|
||||
if (auto tensorType = convertLayout.getResult()
|
||||
.getType()
|
||||
.dyn_cast<RankedTensorType>()) {
|
||||
if (auto dotOpEnc = tensorType.getEncoding()
|
||||
.dyn_cast<ttg::DotOperandEncodingAttr>()) {
|
||||
isCandidate = true;
|
||||
loadsMapping[loadOp] = convertLayout;
|
||||
auto ty = loadOp.getType().cast<RankedTensorType>();
|
||||
SmallVector<int64_t> bufferShape(ty.getShape().begin(),
|
||||
ty.getShape().end());
|
||||
bufferShape.insert(bufferShape.begin(), numStages);
|
||||
auto sharedEnc = ttg::SharedEncodingAttr::get(
|
||||
ty.getContext(), dotOpEnc, ty.getShape(),
|
||||
triton::gpu::getOrder(ty.getEncoding()), ty.getElementType());
|
||||
loadsBufferType[loadOp] = RankedTensorType::get(
|
||||
bufferShape, ty.getElementType(), sharedEnc);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else
|
||||
isCandidate = false;
|
||||
|
||||
if (isCandidate)
|
||||
loads.insert(loadOp);
|
||||
}
|
||||
|
||||
// We have some loads to pipeline
|
||||
if (!loads.empty()) {
|
||||
// Update depArgs & depOps
|
||||
for (Value loadOp : loads) {
|
||||
for (Value dep : loadDeps[loadOp]) {
|
||||
// TODO: we should record the stage that the value is depended on
|
||||
if (auto arg = dep.dyn_cast<BlockArgument>())
|
||||
depArgs.insert(arg);
|
||||
else
|
||||
depOps.insert(dep.getDefiningOp());
|
||||
}
|
||||
}
|
||||
return success();
|
||||
}
|
||||
|
||||
return failure();
|
||||
}
|
||||
|
||||
void LoopPipeliner::emitPrologue() {
|
||||
// llvm::errs() << "loads to pipeline...:\n";
|
||||
// for (Value load : loads)
|
||||
// llvm::errs() << load << "\n";
|
||||
|
||||
OpBuilder builder(forOp);
|
||||
for (BlockArgument &arg : forOp.getRegionIterArgs()) {
|
||||
OpOperand &operand = forOp.getOpOperandForRegionIterArg(arg);
|
||||
setValueMapping(arg, operand.get(), 0);
|
||||
}
|
||||
|
||||
// prologue from [0, numStage-1)
|
||||
Value iv = forOp.getLowerBound();
|
||||
pipelineIterIdx = builder.create<arith::ConstantIntOp>(iv.getLoc(), 0, 32);
|
||||
for (int stage = 0; stage < numStages - 1; ++stage) {
|
||||
// Special handling for induction variable as the increment is implicit
|
||||
if (stage != 0)
|
||||
iv = builder.create<arith::AddIOp>(iv.getLoc(), iv, forOp.getStep());
|
||||
setValueMapping(forOp.getInductionVar(), iv, stage);
|
||||
|
||||
// Special handling for loop condition as there is no condition in ForOp
|
||||
Value loopCond = builder.create<arith::CmpIOp>(
|
||||
iv.getLoc(), arith::CmpIPredicate::slt, iv, forOp.getUpperBound());
|
||||
|
||||
// Rematerialize peeled values
|
||||
SmallVector<Operation *> orderedDeps;
|
||||
for (Operation &op : forOp.getLoopBody().front()) {
|
||||
if (depOps.contains(&op))
|
||||
orderedDeps.push_back(&op);
|
||||
else if (loads.contains(op.getResult(0)))
|
||||
orderedDeps.push_back(&op);
|
||||
}
|
||||
assert(depOps.size() + loads.size() == orderedDeps.size() &&
|
||||
"depOps contains invalid values");
|
||||
for (Operation *op : orderedDeps) {
|
||||
Operation *newOp = nullptr;
|
||||
if (loads.contains(op->getResult(0))) {
|
||||
// Allocate empty buffer
|
||||
if (stage == 0) {
|
||||
loadsBuffer[op->getResult(0)] = allocateEmptyBuffer(op, builder);
|
||||
loadStageBuffer[op->getResult(0)] = {loadsBuffer[op->getResult(0)]};
|
||||
}
|
||||
// load => copy async
|
||||
if (auto loadOp = llvm::dyn_cast<triton::LoadOp>(op)) {
|
||||
Value mask = lookupOrDefault(loadOp.mask(), stage);
|
||||
Value newMask;
|
||||
if (mask) {
|
||||
Value splatCond = builder.create<triton::SplatOp>(
|
||||
mask.getLoc(), mask.getType(), loopCond);
|
||||
newMask =
|
||||
builder.create<arith::AndIOp>(mask.getLoc(), mask, splatCond);
|
||||
} else {
|
||||
newMask = builder.create<triton::SplatOp>(
|
||||
loopCond.getLoc(), getI1SameShape(loadOp), loopCond);
|
||||
}
|
||||
// TODO: check if the hardware supports async copy
|
||||
newOp = builder.create<triton::gpu::InsertSliceAsyncOp>(
|
||||
op->getLoc(), loadsBuffer[loadOp].getType(),
|
||||
lookupOrDefault(loadOp.ptr(), stage),
|
||||
loadStageBuffer[loadOp][stage], pipelineIterIdx, newMask,
|
||||
lookupOrDefault(loadOp.other(), stage), loadOp.cache(),
|
||||
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
|
||||
loadStageBuffer[loadOp].push_back(newOp->getResult(0));
|
||||
} else
|
||||
llvm_unreachable("This should be LoadOp");
|
||||
} else {
|
||||
newOp = builder.clone(*op);
|
||||
// Update loop-carried uses
|
||||
for (unsigned opIdx = 0; opIdx < op->getNumOperands(); ++opIdx) {
|
||||
auto it = valueMapping.find(op->getOperand(opIdx));
|
||||
if (it != valueMapping.end()) {
|
||||
Value v = it->second[stage];
|
||||
assert(v);
|
||||
newOp->setOperand(opIdx, v);
|
||||
} // else, op at opIdx is a loop-invariant value
|
||||
}
|
||||
}
|
||||
|
||||
// Update mapping of results
|
||||
for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) {
|
||||
Value originalResult = op->getResult(dstIdx);
|
||||
// copy_async will update the value of its only use
|
||||
// TODO: load should not be used in the preheader?
|
||||
if (loads.contains(originalResult)) {
|
||||
break;
|
||||
// originalResult = loadsMapping[originalResult];
|
||||
}
|
||||
setValueMapping(originalResult, newOp->getResult(dstIdx), stage);
|
||||
// update mapping for loop-carried values (args)
|
||||
for (OpOperand &operand : yieldOp->getOpOperands()) {
|
||||
if (operand.get() == op->getResult(dstIdx))
|
||||
setValueMapping(
|
||||
forOp.getRegionIterArgs()[operand.getOperandNumber()],
|
||||
newOp->getResult(dstIdx), stage + 1);
|
||||
}
|
||||
}
|
||||
} // for (Operation *op : orderedDeps)
|
||||
|
||||
pipelineIterIdx = builder.create<arith::AddIOp>(
|
||||
iv.getLoc(), pipelineIterIdx,
|
||||
builder.create<arith::ConstantIntOp>(iv.getLoc(), 1, 32));
|
||||
} // for (int stage = 0; stage < numStages - 1; ++stage)
|
||||
|
||||
// async.wait & extract_slice
|
||||
builder.create<ttg::AsyncWaitOp>(loads[0].getLoc(),
|
||||
loads.size() * (numStages - 2));
|
||||
loopIterIdx = builder.create<arith::ConstantIntOp>(iv.getLoc(), 0, 32);
|
||||
for (Value loadOp : loads) {
|
||||
auto sliceType = loadsMapping[loadOp].getType().cast<RankedTensorType>();
|
||||
sliceType =
|
||||
RankedTensorType::get(sliceType.getShape(), sliceType.getElementType(),
|
||||
loadsBufferType[loadOp].getEncoding());
|
||||
Value extractSlice = builder.create<tensor::ExtractSliceOp>(
|
||||
loadOp.getLoc(), sliceType, loadStageBuffer[loadOp][numStages - 1],
|
||||
SmallVector<OpFoldResult>{int_attr(0), int_attr(0), int_attr(0)},
|
||||
SmallVector<OpFoldResult>{int_attr(1),
|
||||
int_attr(sliceType.getShape()[0]),
|
||||
int_attr(sliceType.getShape()[1])},
|
||||
SmallVector<OpFoldResult>{int_attr(1), int_attr(1), int_attr(1)});
|
||||
loadsExtract[loadOp] = extractSlice;
|
||||
}
|
||||
// Bump up loopIterIdx, this is used for getting the correct slice for the
|
||||
// *next* iteration
|
||||
loopIterIdx = builder.create<arith::AddIOp>(
|
||||
loopIterIdx.getLoc(), loopIterIdx,
|
||||
builder.create<arith::ConstantIntOp>(loopIterIdx.getLoc(), 1, 32));
|
||||
}
|
||||
|
||||
void LoopPipeliner::emitEpilogue() {
|
||||
// If there's any outstanding async copies, we need to wait for them.
|
||||
OpBuilder builder(forOp);
|
||||
OpBuilder::InsertionGuard g(builder);
|
||||
builder.setInsertionPointAfter(forOp);
|
||||
builder.create<triton::gpu::AsyncWaitOp>(forOp.getLoc(), 0);
|
||||
}
|
||||
|
||||
scf::ForOp LoopPipeliner::createNewForOp() {
|
||||
OpBuilder builder(forOp);
|
||||
|
||||
// Order of new args:
|
||||
// (original args)
|
||||
// (insertSliceAsync buffer at stage numStages - 1) for each load
|
||||
// (extracted tensor) for each load
|
||||
// (depArgs at stage numStages - 1)
|
||||
// (iv at stage numStages - 2)
|
||||
// (pipeline iteration index)
|
||||
// (loop iteration index)
|
||||
SmallVector<Value> newLoopArgs;
|
||||
// We need this to update operands for yield
|
||||
// original block arg => new arg's idx
|
||||
DenseMap<BlockArgument, size_t> depArgsIdx;
|
||||
for (auto v : forOp.getIterOperands())
|
||||
newLoopArgs.push_back(v);
|
||||
|
||||
size_t bufferIdx = newLoopArgs.size();
|
||||
for (Value loadOp : loads)
|
||||
newLoopArgs.push_back(loadStageBuffer[loadOp].back());
|
||||
size_t loadIdx = newLoopArgs.size();
|
||||
for (Value loadOp : loads)
|
||||
newLoopArgs.push_back(loadsExtract[loadOp]);
|
||||
|
||||
size_t depArgsBeginIdx = newLoopArgs.size();
|
||||
for (BlockArgument depArg : depArgs) {
|
||||
depArgsIdx[depArg] = newLoopArgs.size();
|
||||
newLoopArgs.push_back(valueMapping[depArg][numStages - 1]);
|
||||
}
|
||||
|
||||
size_t nextIVIdx = newLoopArgs.size();
|
||||
newLoopArgs.push_back(valueMapping[forOp.getInductionVar()][numStages - 2]);
|
||||
newLoopArgs.push_back(pipelineIterIdx);
|
||||
newLoopArgs.push_back(loopIterIdx);
|
||||
|
||||
for (size_t i = 0; i < newLoopArgs.size(); ++i)
|
||||
assert(newLoopArgs[i]);
|
||||
|
||||
// 1. signature of the new ForOp
|
||||
auto newForOp = builder.create<scf::ForOp>(
|
||||
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
|
||||
forOp.getStep(), newLoopArgs);
|
||||
|
||||
// 2. body of the new ForOp
|
||||
builder.setInsertionPointToStart(newForOp.getBody());
|
||||
BlockAndValueMapping mapping;
|
||||
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs()))
|
||||
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
|
||||
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
|
||||
|
||||
// 2.1 clone the loop body, replace original args with args of the new ForOp
|
||||
// Insert async wait if necessary.
|
||||
for (Operation &op : forOp.getBody()->without_terminator()) {
|
||||
Operation *newOp = builder.clone(op, mapping);
|
||||
// update mapping of results
|
||||
for (unsigned dstIdx : llvm::seq(unsigned(0), op.getNumResults()))
|
||||
mapping.map(op.getResult(dstIdx), newOp->getResult(dstIdx));
|
||||
}
|
||||
|
||||
// 3. replace loads with block args (from prologue)
|
||||
for (size_t idx = 0; idx < loads.size(); ++idx) {
|
||||
Value load = loads[idx];
|
||||
assert(load.hasOneUse() &&
|
||||
"we assume that this load has one use (ConvertLayout)");
|
||||
Value loadUse = load.getUsers().begin()->getResult(0);
|
||||
mapping.lookup(loadUse).replaceAllUsesWith(
|
||||
newForOp.getRegionIterArgs()[loadIdx + idx]);
|
||||
// delete old load and layout conversion
|
||||
mapping.lookup(loadUse).getDefiningOp()->erase();
|
||||
mapping.lookup(load).getDefiningOp()->erase();
|
||||
}
|
||||
|
||||
// 4. prefetch the next iteration
|
||||
SmallVector<Operation *> orderedDeps;
|
||||
for (Operation &op : forOp.getLoopBody().front()) {
|
||||
if (depOps.contains(&op))
|
||||
orderedDeps.push_back(&op);
|
||||
else if (loads.contains(op.getResult(0)))
|
||||
orderedDeps.push_back(&op);
|
||||
}
|
||||
assert(depOps.size() + loads.size() == orderedDeps.size() &&
|
||||
"depOps contains invalid values");
|
||||
BlockAndValueMapping nextMapping;
|
||||
DenseMap<BlockArgument, Value> depArgsMapping;
|
||||
size_t argIdx = 0;
|
||||
for (BlockArgument arg : depArgs) {
|
||||
nextMapping.map(arg,
|
||||
newForOp.getRegionIterArgs()[argIdx + depArgsBeginIdx]);
|
||||
++argIdx;
|
||||
}
|
||||
// Special handling for iv & loop condition
|
||||
Value nextIV = builder.create<arith::AddIOp>(
|
||||
newForOp.getInductionVar().getLoc(),
|
||||
newForOp.getRegionIterArgs()[nextIVIdx], newForOp.getStep());
|
||||
Value nextLoopCond =
|
||||
builder.create<arith::CmpIOp>(nextIV.getLoc(), arith::CmpIPredicate::slt,
|
||||
nextIV, newForOp.getUpperBound());
|
||||
nextMapping.map(forOp.getInductionVar(), nextIV);
|
||||
|
||||
// Slice index
|
||||
SmallVector<Value> nextBuffers;
|
||||
SmallVector<Value> extractSlices;
|
||||
|
||||
pipelineIterIdx = newForOp.getRegionIterArgs()[nextIVIdx + 1];
|
||||
Value insertSliceIndex = builder.create<arith::RemSIOp>(
|
||||
nextIV.getLoc(), pipelineIterIdx,
|
||||
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), numStages, 32));
|
||||
loopIterIdx = newForOp.getRegionIterArgs()[nextIVIdx + 2];
|
||||
Value extractSliceIndex = builder.create<arith::RemSIOp>(
|
||||
nextIV.getLoc(), loopIterIdx,
|
||||
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), numStages, 32));
|
||||
extractSliceIndex = builder.create<arith::IndexCastOp>(
|
||||
extractSliceIndex.getLoc(), builder.getIndexType(), extractSliceIndex);
|
||||
|
||||
for (Operation *op : orderedDeps) {
|
||||
Operation *nextOp = nullptr;
|
||||
// Update loading mask
|
||||
if (loads.contains(op->getResult(0))) {
|
||||
auto loadOp = llvm::cast<triton::LoadOp>(op);
|
||||
Value mask = loadOp.mask();
|
||||
Value newMask;
|
||||
if (mask) {
|
||||
Value splatCond = builder.create<triton::SplatOp>(
|
||||
mask.getLoc(), mask.getType(), nextLoopCond);
|
||||
newMask = builder.create<arith::AndIOp>(
|
||||
mask.getLoc(), splatCond, nextMapping.lookupOrDefault(mask));
|
||||
// If mask is defined outside the loop, don't update the map more than
|
||||
// once
|
||||
if (!(forOp.isDefinedOutsideOfLoop(mask) && nextMapping.contains(mask)))
|
||||
nextMapping.map(mask, newMask);
|
||||
newMask = nextMapping.lookupOrDefault(loadOp.mask());
|
||||
} else
|
||||
newMask = builder.create<triton::SplatOp>(
|
||||
loadOp.getLoc(), getI1SameShape(loadOp), nextLoopCond);
|
||||
Value insertAsyncOp = builder.create<triton::gpu::InsertSliceAsyncOp>(
|
||||
op->getLoc(), loadsBuffer[loadOp].getType(),
|
||||
nextMapping.lookupOrDefault(loadOp.ptr()),
|
||||
newForOp.getRegionIterArgs()[bufferIdx + nextBuffers.size()],
|
||||
insertSliceIndex, newMask,
|
||||
nextMapping.lookupOrDefault(loadOp.other()), loadOp.cache(),
|
||||
loadOp.evict(), loadOp.isVolatile(), /*axis*/ 0);
|
||||
nextBuffers.push_back(insertAsyncOp);
|
||||
auto sliceType = loadsMapping[loadOp].getType().cast<RankedTensorType>();
|
||||
sliceType = RankedTensorType::get(sliceType.getShape(),
|
||||
sliceType.getElementType(),
|
||||
loadsBufferType[loadOp].getEncoding());
|
||||
nextOp = builder.create<tensor::ExtractSliceOp>(
|
||||
op->getLoc(), sliceType, insertAsyncOp,
|
||||
SmallVector<OpFoldResult>{extractSliceIndex, int_attr(0),
|
||||
int_attr(0)},
|
||||
SmallVector<OpFoldResult>{int_attr(1),
|
||||
int_attr(sliceType.getShape()[0]),
|
||||
int_attr(sliceType.getShape()[1])},
|
||||
SmallVector<OpFoldResult>{int_attr(1), int_attr(1), int_attr(1)});
|
||||
extractSlices.push_back(nextOp->getResult(0));
|
||||
} else
|
||||
nextOp = builder.clone(*op, nextMapping);
|
||||
// Update mapping of results
|
||||
for (unsigned dstIdx : llvm::seq(unsigned(0), op->getNumResults())) {
|
||||
nextMapping.map(op->getResult(dstIdx), nextOp->getResult(dstIdx));
|
||||
// If this is a loop-carried value, update the mapping for yield
|
||||
auto originYield = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
|
||||
for (OpOperand &operand : originYield->getOpOperands()) {
|
||||
if (operand.get() == op->getResult(dstIdx)) {
|
||||
size_t originIdx = operand.getOperandNumber();
|
||||
size_t newArgIdx = depArgsIdx[forOp.getRegionIterArgs()[originIdx]];
|
||||
BlockArgument newArg = newForOp.getRegionIterArgs()[newArgIdx];
|
||||
depArgsMapping[newArg] = nextOp->getResult(dstIdx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
OpBuilder::InsertionGuard guard(builder);
|
||||
for (Operation &op : *newForOp.getBody()) {
|
||||
if (auto dotOp = llvm::dyn_cast<triton::DotOp>(&op)) {
|
||||
builder.setInsertionPoint(&op);
|
||||
auto dotType = dotOp.getType().cast<RankedTensorType>();
|
||||
Value a = dotOp.a();
|
||||
Value b = dotOp.b();
|
||||
auto layoutCast = [&](Value dotOperand, int opIdx) -> Value {
|
||||
auto tensorType = dotOperand.getType().cast<RankedTensorType>();
|
||||
if (!tensorType.getEncoding().isa<ttg::DotOperandEncodingAttr>()) {
|
||||
auto newEncoding = ttg::DotOperandEncodingAttr::get(
|
||||
tensorType.getContext(), opIdx, dotType.getEncoding());
|
||||
auto newType =
|
||||
RankedTensorType::get(tensorType.getShape(),
|
||||
tensorType.getElementType(), newEncoding);
|
||||
return builder.create<ttg::ConvertLayoutOp>(dotOperand.getLoc(),
|
||||
newType, dotOperand);
|
||||
}
|
||||
return dotOperand;
|
||||
};
|
||||
a = layoutCast(a, 0);
|
||||
b = layoutCast(b, 1);
|
||||
dotOp->setOperand(0, a);
|
||||
dotOp->setOperand(1, b);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// async.wait & extract_slice
|
||||
Operation *asyncWait = builder.create<ttg::AsyncWaitOp>(
|
||||
loads[0].getLoc(), loads.size() * (numStages - 2));
|
||||
for (auto it = extractSlices.rbegin(); it != extractSlices.rend(); ++it) {
|
||||
// move extract_slice after asyncWait
|
||||
it->getDefiningOp()->moveAfter(asyncWait);
|
||||
}
|
||||
|
||||
// Bump iteration count
|
||||
pipelineIterIdx = builder.create<arith::AddIOp>(
|
||||
nextIV.getLoc(), pipelineIterIdx,
|
||||
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), 1, 32));
|
||||
loopIterIdx = builder.create<arith::AddIOp>(
|
||||
nextIV.getLoc(), loopIterIdx,
|
||||
builder.create<arith::ConstantIntOp>(nextIV.getLoc(), 1, 32));
|
||||
|
||||
// Finally, the YieldOp, need to sync with the order of newLoopArgs
|
||||
SmallVector<Value> yieldValues;
|
||||
for (Value v : forOp.getBody()->getTerminator()->getOperands())
|
||||
yieldValues.push_back(mapping.lookup(v));
|
||||
for (Value nextBuffer : nextBuffers)
|
||||
yieldValues.push_back(nextBuffer);
|
||||
for (Value nextSlice : extractSlices)
|
||||
yieldValues.push_back(nextSlice);
|
||||
|
||||
for (size_t i = depArgsBeginIdx; i < nextIVIdx; ++i) {
|
||||
auto arg = newForOp.getRegionIterArgs()[i];
|
||||
assert(depArgsMapping.count(arg) && "Missing loop-carried value");
|
||||
yieldValues.push_back(depArgsMapping[arg]);
|
||||
}
|
||||
yieldValues.push_back(nextIV);
|
||||
yieldValues.push_back(pipelineIterIdx);
|
||||
yieldValues.push_back(loopIterIdx);
|
||||
|
||||
builder.setInsertionPointToEnd(newForOp.getBody());
|
||||
builder.create<scf::YieldOp>(forOp.getBody()->getTerminator()->getLoc(),
|
||||
yieldValues);
|
||||
return newForOp;
|
||||
}
|
||||
|
||||
// ref: mlir/lib/Dialect/SCF/Transforms/LoopPipelining.cpp
|
||||
struct PipelinePass : public TritonGPUPipelineBase<PipelinePass> {
|
||||
PipelinePass() = default;
|
||||
PipelinePass(int numStages) { this->numStages = numStages; }
|
||||
|
||||
void runOnOperation() override {
|
||||
int numStages = this->numStages;
|
||||
|
||||
if (numStages <= 1)
|
||||
return;
|
||||
|
||||
getOperation()->walk([&](scf::ForOp forOp) -> void {
|
||||
LoopPipeliner pipeliner(forOp, numStages);
|
||||
|
||||
if (pipeliner.initialize().failed())
|
||||
return;
|
||||
|
||||
pipeliner.emitPrologue();
|
||||
|
||||
scf::ForOp newForOp = pipeliner.createNewForOp();
|
||||
|
||||
pipeliner.emitEpilogue();
|
||||
|
||||
// replace the original loop
|
||||
for (unsigned i = 0; i < forOp->getNumResults(); ++i)
|
||||
forOp->getResult(i).replaceAllUsesWith(newForOp->getResult(i));
|
||||
forOp->erase();
|
||||
});
|
||||
}
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
std::unique_ptr<Pass> mlir::createTritonGPUPipelinePass(int numStages) {
|
||||
return std::make_unique<PipelinePass>(numStages);
|
||||
}
|
313
lib/Dialect/TritonGPU/Transforms/Prefetch.cpp
Normal file
313
lib/Dialect/TritonGPU/Transforms/Prefetch.cpp
Normal file
@@ -0,0 +1,313 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass tries to prefetch operands (a and b) of tt.dot.
|
||||
// Those ConvertLayoutOps will be lowered to shared memory loads.
|
||||
//
|
||||
// For example:
|
||||
// %a: tensor<128x32xf16, #enc>
|
||||
// scf.for %iv = ... iter_args(%a_arg = %a, ...) {
|
||||
// %d = tt.dot %a_arg, %b, %c
|
||||
// ...
|
||||
// scf.yield %a_next, ...
|
||||
// }
|
||||
//
|
||||
// will be translated to
|
||||
//
|
||||
// %a: tensor<128x32xf16, #enc>
|
||||
// %a_tmp = tensor.extract_slice %a[0, 0] [128, 16]
|
||||
// %a_prefetch = triton_gpu.convert_layout %a_tmp
|
||||
// scf.for %iv = ... iter_args(%a_buf = %a, ..., %a_prefetch_arg = %a_prefetch)
|
||||
// {
|
||||
// %x = tt.dot %a_arg, %b, %c
|
||||
// %a_tmp_rem = tensor.extract_slice %a_buf[0, 16] [128, 16]
|
||||
// %a_prefetch_next = triton_gpu.convert_layout %a_tmp_rem
|
||||
// ...
|
||||
// scf.yield %next_a, ..., %a_prefetch_next
|
||||
// }
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/IR/BlockAndValueMapping.h"
|
||||
#include "triton/Analysis/Utility.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h"
|
||||
|
||||
using namespace mlir;
|
||||
|
||||
#define GEN_PASS_CLASSES
|
||||
#include "triton/Dialect/TritonGPU/Transforms/Passes.h.inc"
|
||||
|
||||
namespace {
|
||||
|
||||
class Prefetcher {
|
||||
/// cache the ForOp we are working on
|
||||
scf::ForOp forOp;
|
||||
/// cache the YieldOp of this ForOp
|
||||
scf::YieldOp yieldOp;
|
||||
///
|
||||
// TODO: add a hook to infer prefetchWidth
|
||||
unsigned prefetchWidth = 16;
|
||||
|
||||
/// dots to be prefetched
|
||||
SetVector<Value> dots;
|
||||
/// dot => dot operand
|
||||
DenseMap<Value, Value> dot2aLoopArg;
|
||||
DenseMap<Value, Value> dot2aHeaderDef;
|
||||
DenseMap<Value, Value> dot2bLoopArg;
|
||||
DenseMap<Value, Value> dot2bHeaderDef;
|
||||
DenseMap<Value, Value> dot2aYield;
|
||||
DenseMap<Value, Value> dot2bYield;
|
||||
/// operand => defining
|
||||
DenseMap<Value, Value> operand2headPrefetch;
|
||||
|
||||
LogicalResult isForOpOperand(Value v);
|
||||
|
||||
Value generatePrefetch(Value v, unsigned opIdx, bool isPrologue,
|
||||
Attribute dotEncoding, OpBuilder &builder,
|
||||
llvm::Optional<int64_t> offsetK = llvm::None,
|
||||
llvm::Optional<int64_t> shapeK = llvm::None);
|
||||
|
||||
public:
|
||||
Prefetcher() = delete;
|
||||
|
||||
Prefetcher(scf::ForOp forOp) : forOp(forOp) {
|
||||
yieldOp = cast<scf::YieldOp>(forOp.getBody()->getTerminator());
|
||||
}
|
||||
|
||||
LogicalResult initialize();
|
||||
|
||||
void emitPrologue();
|
||||
|
||||
scf::ForOp createNewForOp();
|
||||
};
|
||||
|
||||
Value Prefetcher::generatePrefetch(Value v, unsigned opIdx, bool isPrologue,
|
||||
Attribute dotEncoding, OpBuilder &builder,
|
||||
llvm::Optional<int64_t> offsetK,
|
||||
llvm::Optional<int64_t> shapeK) {
|
||||
// opIdx: 0 => a, 1 => b
|
||||
auto type = v.getType().cast<RankedTensorType>();
|
||||
SmallVector<int64_t> shape{type.getShape().begin(), type.getShape().end()};
|
||||
SmallVector<int64_t> offset{0, 0};
|
||||
Type elementType = type.getElementType();
|
||||
|
||||
auto intAttr = [&](int64_t val) { return builder.getI64IntegerAttr(val); };
|
||||
|
||||
// k => (prefetchWidth, k - prefetchWidth)
|
||||
int64_t kIdx = opIdx == 0 ? 1 : 0;
|
||||
|
||||
offset[kIdx] = isPrologue ? 0 : prefetchWidth;
|
||||
shape[kIdx] = isPrologue ? prefetchWidth : (shape[kIdx] - prefetchWidth);
|
||||
|
||||
if (shapeK)
|
||||
shape[kIdx] = *shapeK;
|
||||
if (offsetK)
|
||||
offset[kIdx] = *offsetK;
|
||||
|
||||
Value newSmem = builder.create<tensor::ExtractSliceOp>(
|
||||
v.getLoc(),
|
||||
// TODO: encoding?
|
||||
RankedTensorType::get(shape, elementType, type.getEncoding()), v,
|
||||
SmallVector<OpFoldResult>{intAttr(offset[0]), intAttr(offset[1])},
|
||||
SmallVector<OpFoldResult>{intAttr(shape[0]), intAttr(shape[1])},
|
||||
SmallVector<OpFoldResult>{intAttr(1), intAttr(1)});
|
||||
|
||||
auto dotOperandEnc = triton::gpu::DotOperandEncodingAttr::get(
|
||||
builder.getContext(), opIdx, dotEncoding);
|
||||
Value prefetchSlice = builder.create<triton::gpu::ConvertLayoutOp>(
|
||||
v.getLoc(), RankedTensorType::get(shape, elementType, dotOperandEnc),
|
||||
newSmem);
|
||||
|
||||
return prefetchSlice;
|
||||
}
|
||||
|
||||
LogicalResult Prefetcher::initialize() {
|
||||
Block *loop = forOp.getBody();
|
||||
|
||||
SmallVector<triton::DotOp> dotsInFor;
|
||||
for (Operation &op : *loop)
|
||||
if (auto dotOp = dyn_cast<triton::DotOp>(op))
|
||||
dotsInFor.push_back(dotOp);
|
||||
|
||||
if (dotsInFor.empty())
|
||||
return failure();
|
||||
|
||||
// TODO: segfault (original for still has uses)
|
||||
// when used in flash attention that has 2 dots in the loop
|
||||
if (dotsInFor.size() > 1)
|
||||
return failure();
|
||||
|
||||
// returns source of cvt
|
||||
auto getPrefetchSrc = [](Value v) -> Value {
|
||||
if (auto cvt = v.getDefiningOp<triton::gpu::ConvertLayoutOp>())
|
||||
if (isSharedEncoding(cvt.getOperand()))
|
||||
return cvt.src();
|
||||
return Value();
|
||||
};
|
||||
|
||||
auto getIncomingOp = [this](Value v) -> Value {
|
||||
if (auto arg = v.dyn_cast<BlockArgument>())
|
||||
if (arg.getOwner()->getParentOp() == forOp.getOperation())
|
||||
return forOp.getOpOperandForRegionIterArg(arg).get();
|
||||
return Value();
|
||||
};
|
||||
|
||||
auto getYieldOp = [this](Value v) -> Value {
|
||||
auto arg = v.cast<BlockArgument>();
|
||||
unsigned yieldIdx = arg.getArgNumber() - forOp.getNumInductionVars();
|
||||
return yieldOp.getOperand(yieldIdx);
|
||||
};
|
||||
|
||||
for (triton::DotOp dot : dotsInFor) {
|
||||
auto kSize = dot.a().getType().cast<RankedTensorType>().getShape()[1];
|
||||
// Skip prefetching if kSize is less than prefetchWidth
|
||||
if (kSize < prefetchWidth)
|
||||
continue;
|
||||
Value aSmem = getPrefetchSrc(dot.a());
|
||||
Value bSmem = getPrefetchSrc(dot.b());
|
||||
if (aSmem && bSmem) {
|
||||
Value aHeaderDef = getIncomingOp(aSmem);
|
||||
Value bHeaderDef = getIncomingOp(bSmem);
|
||||
// Only prefetch loop arg
|
||||
if (aHeaderDef && bHeaderDef) {
|
||||
dots.insert(dot);
|
||||
dot2aHeaderDef[dot] = aHeaderDef;
|
||||
dot2bHeaderDef[dot] = bHeaderDef;
|
||||
dot2aLoopArg[dot] = aSmem;
|
||||
dot2bLoopArg[dot] = bSmem;
|
||||
dot2aYield[dot] = getYieldOp(aSmem);
|
||||
dot2bYield[dot] = getYieldOp(bSmem);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return success();
|
||||
}
|
||||
|
||||
void Prefetcher::emitPrologue() {
|
||||
OpBuilder builder(forOp);
|
||||
|
||||
for (Value dot : dots) {
|
||||
Attribute dotEncoding =
|
||||
dot.getType().cast<RankedTensorType>().getEncoding();
|
||||
Value aPrefetched =
|
||||
generatePrefetch(dot2aHeaderDef[dot], 0, true, dotEncoding, builder);
|
||||
operand2headPrefetch[dot.getDefiningOp<triton::DotOp>().a()] = aPrefetched;
|
||||
Value bPrefetched =
|
||||
generatePrefetch(dot2bHeaderDef[dot], 1, true, dotEncoding, builder);
|
||||
operand2headPrefetch[dot.getDefiningOp<triton::DotOp>().b()] = bPrefetched;
|
||||
}
|
||||
}
|
||||
|
||||
scf::ForOp Prefetcher::createNewForOp() {
|
||||
OpBuilder builder(forOp);
|
||||
|
||||
SmallVector<Value> loopArgs;
|
||||
for (auto v : forOp.getIterOperands())
|
||||
loopArgs.push_back(v);
|
||||
for (Value dot : dots) {
|
||||
loopArgs.push_back(
|
||||
operand2headPrefetch[dot.getDefiningOp<triton::DotOp>().a()]);
|
||||
loopArgs.push_back(
|
||||
operand2headPrefetch[dot.getDefiningOp<triton::DotOp>().b()]);
|
||||
}
|
||||
|
||||
auto newForOp = builder.create<scf::ForOp>(
|
||||
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
|
||||
forOp.getStep(), loopArgs);
|
||||
|
||||
auto largestPow2 = [](int64_t n) -> int64_t {
|
||||
while ((n & (n - 1)) != 0)
|
||||
n = n & (n - 1);
|
||||
return n;
|
||||
};
|
||||
|
||||
builder.setInsertionPointToStart(newForOp.getBody());
|
||||
BlockAndValueMapping mapping;
|
||||
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs()))
|
||||
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
|
||||
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
|
||||
|
||||
for (Operation &op : forOp.getBody()->without_terminator()) {
|
||||
Operation *newOp = builder.clone(op, mapping);
|
||||
auto dot = dyn_cast<triton::DotOp>(&op);
|
||||
if (dots.contains(dot)) {
|
||||
Attribute dotEncoding =
|
||||
dot.getType().cast<RankedTensorType>().getEncoding();
|
||||
// prefetched dot
|
||||
Operation *firstDot = builder.clone(*dot, mapping);
|
||||
if (Value a = operand2headPrefetch.lookup(dot.a()))
|
||||
firstDot->setOperand(
|
||||
0, newForOp.getRegionIterArgForOpOperand(*a.use_begin()));
|
||||
if (Value b = operand2headPrefetch.lookup(dot.b()))
|
||||
firstDot->setOperand(
|
||||
1, newForOp.getRegionIterArgForOpOperand(*b.use_begin()));
|
||||
|
||||
// remaining part
|
||||
int64_t kOff = prefetchWidth;
|
||||
int64_t kRem = dot.a().getType().cast<RankedTensorType>().getShape()[1] -
|
||||
prefetchWidth;
|
||||
Operation *prevDot = firstDot;
|
||||
while (kRem != 0) {
|
||||
int64_t kShape = largestPow2(kRem);
|
||||
Value aRem =
|
||||
generatePrefetch(mapping.lookup(dot2aLoopArg[dot]), 0, false,
|
||||
dotEncoding, builder, kOff, kShape);
|
||||
Value bRem =
|
||||
generatePrefetch(mapping.lookup(dot2bLoopArg[dot]), 1, false,
|
||||
dotEncoding, builder, kOff, kShape);
|
||||
newOp = builder.clone(*dot, mapping);
|
||||
newOp->setOperand(0, aRem);
|
||||
newOp->setOperand(1, bRem);
|
||||
newOp->setOperand(2, prevDot->getResult(0));
|
||||
prevDot = newOp;
|
||||
kOff += kShape;
|
||||
kRem -= kShape;
|
||||
}
|
||||
}
|
||||
// update mapping of results
|
||||
for (unsigned dstIdx : llvm::seq(unsigned(0), op.getNumResults()))
|
||||
mapping.map(op.getResult(dstIdx), newOp->getResult(dstIdx));
|
||||
}
|
||||
|
||||
// prefetch next iteration
|
||||
SmallVector<Value> yieldValues;
|
||||
for (Value v : forOp.getBody()->getTerminator()->getOperands())
|
||||
yieldValues.push_back(mapping.lookup(v));
|
||||
for (Value dot : dots) {
|
||||
Attribute dotEncoding =
|
||||
dot.getType().cast<RankedTensorType>().getEncoding();
|
||||
yieldValues.push_back(generatePrefetch(mapping.lookup(dot2aYield[dot]), 0,
|
||||
true, dotEncoding, builder));
|
||||
yieldValues.push_back(generatePrefetch(mapping.lookup(dot2bYield[dot]), 1,
|
||||
true, dotEncoding, builder));
|
||||
}
|
||||
// Update ops of yield
|
||||
builder.create<scf::YieldOp>(yieldOp.getLoc(), yieldValues);
|
||||
return newForOp;
|
||||
}
|
||||
|
||||
struct PrefetchPass : public TritonGPUPrefetchBase<PrefetchPass> {
|
||||
void runOnOperation() override {
|
||||
getOperation()->walk([&](scf::ForOp forOp) {
|
||||
Prefetcher prefetcher(forOp);
|
||||
|
||||
if (prefetcher.initialize().failed())
|
||||
return;
|
||||
|
||||
prefetcher.emitPrologue();
|
||||
|
||||
scf::ForOp newForOp = prefetcher.createNewForOp();
|
||||
|
||||
// replace the original loop
|
||||
for (unsigned i = 0; i < forOp->getNumResults(); ++i)
|
||||
forOp->getResult(i).replaceAllUsesWith(newForOp->getResult(i));
|
||||
forOp->erase();
|
||||
});
|
||||
}
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
std::unique_ptr<Pass> mlir::createTritonGPUPrefetchPass() {
|
||||
return std::make_unique<PrefetchPass>();
|
||||
}
|
103
lib/Dialect/TritonGPU/Transforms/TritonGPUConversion.cpp
Normal file
103
lib/Dialect/TritonGPU/Transforms/TritonGPUConversion.cpp
Normal file
@@ -0,0 +1,103 @@
|
||||
#include "triton/Dialect/TritonGPU/Transforms/TritonGPUConversion.h"
|
||||
#include "mlir/IR/BlockAndValueMapping.h"
|
||||
#include "triton/Dialect/Triton/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
#include <algorithm>
|
||||
#include <numeric>
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::triton::gpu;
|
||||
|
||||
//
|
||||
// TypeConverter
|
||||
//
|
||||
TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
|
||||
int numWarps)
|
||||
: context(context), numWarps(numWarps) {
|
||||
// TODO: how does MLIR pick the right conversion?
|
||||
addConversion([](Type type) { return type; });
|
||||
addConversion([this](RankedTensorType tensorType) -> RankedTensorType {
|
||||
// types with encoding are already in the right format
|
||||
// TODO: check for layout encodings specifically
|
||||
if (tensorType.getEncoding())
|
||||
return tensorType;
|
||||
// pessimistic values for attributes:
|
||||
// - 1 element per thread
|
||||
// - order = arange(rank)
|
||||
ArrayRef<int64_t> shape = tensorType.getShape();
|
||||
int rank = shape.size();
|
||||
llvm::SmallVector<unsigned> order(rank);
|
||||
std::iota(order.begin(), order.end(), 0);
|
||||
llvm::SmallVector<unsigned> sizePerThread(rank, 1);
|
||||
Attribute encoding = triton::gpu::BlockedEncodingAttr::get(
|
||||
this->context, shape, sizePerThread, order, this->numWarps);
|
||||
return RankedTensorType::get(shape, tensorType.getElementType(), encoding);
|
||||
});
|
||||
|
||||
//
|
||||
// Materializations
|
||||
//
|
||||
// This will be called when (newArgType != origArgType)
|
||||
// This will create newArg, and map(origArg, newArg)
|
||||
addArgumentMaterialization([&](OpBuilder &builder,
|
||||
RankedTensorType tensorType, ValueRange inputs,
|
||||
Location loc) {
|
||||
llvm_unreachable("Argument rematerialization not implemented");
|
||||
return llvm::None;
|
||||
});
|
||||
|
||||
// If the origValue still has live user(s), use this to
|
||||
// convert origValue to newValue
|
||||
addSourceMaterialization([&](OpBuilder &builder, RankedTensorType tensorType,
|
||||
ValueRange inputs, Location loc) {
|
||||
llvm_unreachable("Source rematerialization not implemented");
|
||||
return llvm::None;
|
||||
});
|
||||
|
||||
// This will be called when (desiredType != newOperandType)
|
||||
// where, desiredType = typeConverter->convertType(origType)
|
||||
// NOTE: only for remapped values.
|
||||
addTargetMaterialization([&](OpBuilder &builder, RankedTensorType tensorType,
|
||||
ValueRange inputs, Location loc) {
|
||||
auto cast =
|
||||
builder.create<triton::gpu::ConvertLayoutOp>(loc, tensorType, inputs);
|
||||
return Optional<Value>(cast.getResult());
|
||||
// return Optional<Value>(cast.getResult(0));
|
||||
// llvm_unreachable("Not implemented");
|
||||
// return llvm::None;
|
||||
});
|
||||
}
|
||||
|
||||
//
|
||||
// TritonGPUConversion
|
||||
//
|
||||
TritonGPUConversionTarget::TritonGPUConversionTarget(
|
||||
MLIRContext &context, TritonGPUTypeConverter &typeConverter)
|
||||
: ConversionTarget(context) {
|
||||
// TODO: we should also verify ops of TritonGPUDialect
|
||||
addLegalDialect<triton::gpu::TritonGPUDialect>();
|
||||
|
||||
// Some ops from SCF are illegal
|
||||
addIllegalOp<scf::ExecuteRegionOp, scf::ParallelOp, scf::ReduceOp,
|
||||
scf::ReduceReturnOp>();
|
||||
|
||||
addDynamicallyLegalDialect<arith::ArithmeticDialect, math::MathDialect,
|
||||
triton::TritonDialect, StandardOpsDialect,
|
||||
scf::SCFDialect>([&](Operation *op) {
|
||||
if (typeConverter.isLegal(op))
|
||||
return true;
|
||||
return false;
|
||||
});
|
||||
|
||||
// We have requirements for the data layouts
|
||||
addDynamicallyLegalOp<triton::DotOp>([](triton::DotOp dotOp) -> bool {
|
||||
Attribute aEncoding =
|
||||
dotOp.a().getType().cast<RankedTensorType>().getEncoding();
|
||||
Attribute bEncoding =
|
||||
dotOp.b().getType().cast<RankedTensorType>().getEncoding();
|
||||
if (aEncoding && aEncoding.isa<triton::gpu::DotOperandEncodingAttr>() &&
|
||||
bEncoding && bEncoding.isa<triton::gpu::DotOperandEncodingAttr>())
|
||||
return true;
|
||||
return false;
|
||||
});
|
||||
}
|
Reference in New Issue
Block a user