Merge triton-mlir branch - Complete rewrite of the backend from scratch (#1004)

This PR merges the `triton-mlir` branch, in which we have been quietly
rewriting the Triton backend from scratch to increase maintainability,
stability and ultimately performance. Changes to the runtime are
minimal, and this new version aims to remain backward-compatible with
the previous commit. The legacy backend is now officially deprecated,
but can still be accessed via the `legacy-backend` tag.

Co-authored-by: Keren Zhou <kerenzhou@openai.com>
Co-authored-by: Yan Chunwei <yanchunwei@outlook.com>
Co-authored-by: goostavz <109190422+goostavz@users.noreply.github.com>
Co-authored-by: Shintaro Iwasaki <siwasaki@fb.com>
Co-authored-by: Yan Da <dyanab@connect.ust.hk>
Co-authored-by: Jun Yang <yangjunpro@gmail.com>
Co-authored-by: Ian Bearman <ianb@microsoft.com>
Co-authored-by: Jason Ansel <jansel@jansel.net>
Co-authored-by: Qingyi Liu <qingyil@nvidia.com>
Co-authored-by: ben-zhang-609 <110140741+ben-zhang-609@users.noreply.github.com>
Co-authored-by: Chenggang Zhao <lyricz@yeah.net>
Co-authored-by: ben-zhang-609 <benzh609@gmail.com>
Co-authored-by: dongdongl <dongdongl@nvidia.com>
This commit is contained in:
Philippe Tillet
2022-12-21 01:30:50 -08:00
committed by GitHub
parent 8650b4d1cb
commit 20100a7254
285 changed files with 26312 additions and 50143 deletions

View File

@@ -156,16 +156,7 @@ import triton.language as tl
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
],
key=['M', 'N', 'K'],
)
@@ -236,8 +227,8 @@ def matmul_kernel(
b_ptrs += BLOCK_SIZE_K * stride_bk
# you can fuse arbitrary activation functions here
# while the accumulator is still in FP32!
if ACTIVATION == "leaky_relu":
accumulator = leaky_relu(accumulator)
if ACTIVATION:
accumulator = ACTIVATION(accumulator)
c = accumulator.to(tl.float16)
# -----------------------------------------------------------
@@ -252,7 +243,6 @@ def matmul_kernel(
# we can fuse `leaky_relu` by providing it as an `ACTIVATION` meta-parameter in `_matmul`
@triton.jit
def leaky_relu(x):
x = x + 1
return tl.where(x >= 0, x, 0.01 * x)
@@ -261,7 +251,7 @@ def leaky_relu(x):
# and (1) checks any shape constraint; (2) allocates the output; (3) launches the above kernel
def matmul(a, b, activation=""):
def matmul(a, b, activation=None):
# checks constraints
assert a.shape[1] == b.shape[0], "incompatible dimensions"
assert a.is_contiguous(), "matrix A must be contiguous"
@@ -297,7 +287,7 @@ def matmul(a, b, activation=""):
torch.manual_seed(0)
a = torch.randn((512, 512), device='cuda', dtype=torch.float16)
b = torch.randn((512, 512), device='cuda', dtype=torch.float16)
triton_output = matmul(a, b)
triton_output = matmul(a, b, activation=None)
torch_output = torch.matmul(a, b)
print(f"triton_output={triton_output}")
print(f"torch_output={torch_output}")
@@ -319,13 +309,13 @@ else:
triton.testing.Benchmark(
x_names=['M', 'N', 'K'], # argument names to use as an x-axis for the plot
x_vals=[
128 * i for i in range(2, 33)
8192
], # different possible values for `x_name`
line_arg='provider', # argument name whose value corresponds to a different line in the plot
# possible values for `line_arg``
line_vals=['cublas', 'cublas + relu', 'triton', 'triton + relu'],
line_vals=['cublas', 'triton'],
# label name for the lines
line_names=["cuBLAS", "cuBLAS (+ torch.nn.LeakyReLU)", "Triton", "Triton (+ LeakyReLU)"],
line_names=["cuBLAS", "Triton"],
# line styles
styles=[('green', '-'), ('green', '--'), ('blue', '-'), ('blue', '--')],
ylabel="TFLOPS", # label name for the y-axis
@@ -337,18 +327,9 @@ def benchmark(M, N, K, provider):
a = torch.randn((M, K), device='cuda', dtype=torch.float16)
b = torch.randn((K, N), device='cuda', dtype=torch.float16)
if provider == 'cublas':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b))
ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), rep=100)
if provider == 'triton':
ms, min_ms, max_ms = triton.testing.do_bench(lambda: matmul(a, b))
if provider == 'cublas + relu':
torch_relu = torch.nn.ReLU(inplace=True)
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: torch_relu(torch.matmul(a, b))
)
if provider == 'triton + relu':
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: matmul(a, b, activation="leaky_relu")
)
ms, min_ms, max_ms = triton.testing.do_bench(lambda: matmul(a, b), rep=100)
perf = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3)
return perf(ms), perf(max_ms), perf(min_ms)