[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-09 00:51:04 +00:00
parent d155d9a166
commit 24ae9b82dd
167 changed files with 312 additions and 312 deletions

View File

@@ -325,9 +325,9 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
1 8192.0 19.200000 15.999999
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 50.221 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.831 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -372,16 +372,16 @@ We will then compare its performance against (1) <code class="code docutils lite
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 416.101597 198.895304
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 810.925276 412.971190 198.716830
97 12672.0 812.633240 412.097543 198.776477
93 12160.0 812.359066 405.333344 199.038365
94 12288.0 812.429770 415.222812 199.197579
95 12416.0 812.498981 411.296057 198.805107
96 12544.0 811.745227 412.971190 199.012395
97 12672.0 811.007961 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 32.174 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 28.967 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 3.276800
0 256.0 2.978909 ... 3.276800 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 48.161033
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 67.305878
9 1408.0 64.138541 ... 69.009825 68.147202
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
11 1664.0 63.372618 ... 63.372618 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.155572 ... 87.876193 85.998493
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.711310 85.393507
18 2560.0 77.833728 ... 82.125311 81.512437
19 2688.0 83.922689 ... 90.316801 90.316801
20 2816.0 79.733474 ... 84.360174 83.074685
21 2944.0 81.967162 ... 83.198715 82.373605
22 3072.0 82.241254 ... 89.593522 88.750943
23 3200.0 84.544253 ... 96.969694 95.238096
24 3328.0 83.034941 ... 85.398926 84.298943
25 3456.0 82.015834 ... 91.511426 90.790053
26 3584.0 85.715344 ... 94.349836 97.734120
27 3712.0 85.455380 ... 86.940496 87.284705
28 3840.0 83.120631 ... 92.778524 85.629632
29 3968.0 90.791620 ... 86.266483 90.054568
30 4096.0 91.678778 ... 92.852115 88.330190
15 2176.0 83.500614 ... 87.876193 86.367588
16 2304.0 68.446623 ... 78.064941 77.057651
17 2432.0 71.305746 ... 85.915795 83.366361
18 2560.0 77.833728 ... 81.715711 81.310171
19 2688.0 83.369354 ... 90.532356 90.102270
20 2816.0 81.445766 ... 84.035084 83.873477
21 2944.0 81.564701 ... 83.477440 82.921853
22 3072.0 82.420822 ... 89.735509 88.750943
23 3200.0 84.544253 ... 97.116842 95.096582
24 3328.0 83.905938 ... 85.806075 83.808259
25 3456.0 82.773682 ... 90.180725 90.687926
26 3584.0 87.042978 ... 99.244365 98.268190
27 3712.0 81.482335 ... 88.718781 88.248537
28 3840.0 82.531346 ... 89.043476 89.912191
29 3968.0 86.911637 ... 92.652949 84.094627
30 4096.0 93.368854 ... 83.313299 89.928129
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 4.446 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 37.798 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.284 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -196,36 +196,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm:
N Triton Torch Apex
0 1024.0 585.142849 277.694907 481.882344
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 365.714281 512.000013
2 2048.0 668.734716 337.814445 520.126988
3 2560.0 694.237267 362.477870 518.481028
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 396.387087 428.651163
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 392.587863 387.634072
14 8192.0 633.198054 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.310952
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.098578 406.974373 376.225175
5 3584.0 725.873439 384.859062 458.751978
6 4096.0 728.177767 383.251446 455.111095
7 4608.0 670.254540 396.387087 423.724136
8 5120.0 688.403381 395.748783 417.959197
9 5632.0 704.000002 396.969169 413.357796
10 6144.0 702.171410 404.543206 409.600010
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 391.426634 387.459443
13 7680.0 678.895043 392.587863 385.203746
14 8192.0 636.271854 388.937680 368.179771
15 8704.0 627.315309 387.922008 380.502740
16 9216.0 606.814809 405.098894 382.010363
17 9728.0 587.350922 409.599987 382.427505
18 10240.0 566.920437 408.578556 382.803739
19 10752.0 547.872604 411.559798 380.601764
20 11264.0 533.207081 401.389743 372.363645
21 11776.0 520.486200 408.711507 377.587162
22 12288.0 516.031509 413.911572 383.251457
23 12800.0 504.433489 410.420828 377.163903
24 13312.0 494.180982 404.159395 375.647260
25 13824.0 482.934503 410.359948 378.739711
26 14336.0 472.940209 403.121247 374.185964
27 14848.0 461.297068 405.406157 374.712936
28 15360.0 454.269882 406.214870 377.511515
29 15872.0 447.098578 407.627589 376.225175
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.707 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 35.089 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.072 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.267 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:52.172</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:23.779</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>07:04.446</p></td>
<td><p>06:37.798</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:24.707</p></td>
<td><p>05:35.089</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:32.174</p></td>
<td><p>03:28.967</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:50.221</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.284</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.267</p></td>
<td><p>01:41.831</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.073</p></td>
<td><p>00:00.072</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>