[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-09 00:51:04 +00:00
parent d155d9a166
commit 24ae9b82dd
167 changed files with 312 additions and 312 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.952 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.660 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
0 256.0 512.000001 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 664.216187 163.839992
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.631953
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 411.296057 198.556711
96 12544.0 812.566838 412.971190 198.766042
97 12672.0 812.633240 411.679167 198.971549
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 416.101597 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.971190 198.815254
97 12672.0 812.633240 412.097543 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.346 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.797 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.446623 ... 76.319081 76.563695
17 2432.0 71.305746 ... 74.918570 84.367759
18 2560.0 78.019048 ... 81.310171 81.108913
19 2688.0 83.461070 ... 89.044730 89.888756
20 2816.0 83.392363 ... 81.981598 82.602666
21 2944.0 81.967162 ... 80.251257 81.967162
22 3072.0 81.825298 ... 88.060814 87.924073
23 3200.0 84.656085 ... 95.665176 95.238096
24 3328.0 83.226931 ... 84.795401 84.596116
25 3456.0 82.266905 ... 91.355888 90.841203
26 3584.0 83.876297 ... 93.661869 86.958797
27 3712.0 84.946722 ... 85.970176 87.552452
28 3840.0 82.747472 ... 86.265212 91.625518
29 3968.0 86.114283 ... 90.994735 83.807647
30 4096.0 92.563952 ... 85.434583 85.271746
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.998493 85.632545
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.719317 84.877538
18 2560.0 77.833728 ... 81.512437 81.108913
19 2688.0 83.369354 ... 89.044730 88.628636
20 2816.0 83.552120 ... 83.233226 83.233226
21 2944.0 82.237674 ... 83.198715 82.102191
22 3072.0 81.943708 ... 88.060814 89.030036
23 3200.0 84.210524 ... 94.955488 95.238096
24 3328.0 83.419811 ... 84.397770 84.200347
25 3456.0 81.353753 ... 91.407671 85.630979
26 3584.0 85.633710 ... 93.661869 95.553020
27 3712.0 83.386762 ... 87.246590 86.942857
28 3840.0 83.497171 ... 90.242349 88.156237
29 3968.0 91.266964 ... 86.175099 89.394823
30 4096.0 88.592559 ... 93.045216 89.240508
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 59.817 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 21.974 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.114 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 465.454542 182.857144 332.108113
4 3072.0 515.580429 191.501303 315.076914
5 3584.0 551.384634 207.768111 308.301075
6 4096.0 568.231237 220.412561 300.623865
7 4608.0 500.416301 231.849059 292.571431
8 5120.0 525.128191 242.845844 288.450695
9 5632.0 542.843364 242.236559 287.591490
10 6144.0 548.163546 249.925419 288.000001
11 6656.0 537.858601 254.369423 284.748652
12 7168.0 510.480705 254.862216 278.368936
13 7680.0 482.513091 262.190612 276.341823
14 8192.0 462.607053 267.130429 280.068380
15 8704.0 416.127506 265.096445 283.056921
16 9216.0 429.483477 272.394084 288.375482
17 9728.0 436.396262 281.630872 290.027323
18 10240.0 446.025405 285.435547 288.789653
19 10752.0 432.966444 246.935876 290.922209
20 11264.0 429.104745 244.869560 287.285864
21 11776.0 422.457417 249.667843 288.981596
22 12288.0 420.102570 254.234486 294.617366
23 12800.0 416.824953 253.256381 288.180121
24 13312.0 411.181478 250.972500 288.346556
25 13824.0 405.594132 257.091040 292.056329
26 14336.0 400.074432 255.051144 287.678923
27 14848.0 383.999990 255.816222 287.380642
28 15360.0 373.495460 259.422943 286.656296
29 15872.0 370.192407 262.347108 290.120338
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 327.679984
3 2560.0 461.954908 182.857144 326.808501
4 3072.0 515.580429 191.501303 317.793096
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 294.323343
7 4608.0 498.162157 231.849059 292.571431
8 5120.0 525.128191 242.845844 287.775181
9 5632.0 538.517949 243.545956 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 482.513091 260.338991 276.756754
14 8192.0 461.521112 269.326017 287.018988
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 429.483477 273.066667 289.507855
17 9728.0 439.683593 280.278512 288.950501
18 10240.0 447.650282 286.767793 290.153487
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.104745 245.313973 285.767446
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 420.102570 254.673582 295.207195
23 12800.0 415.135142 253.465340 288.180121
24 13312.0 412.775186 252.759501 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 397.761846 254.862216 286.481278
27 14848.0 383.999990 257.293872 289.246765
28 15360.0 374.634130 257.790220 286.433562
29 15872.0 367.336555 262.708969 291.452168
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.468 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 10.989 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:17.697</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:36.431</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:59.817</p></td>
<td><p>05:21.974</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.346</p></td>
<td><p>03:22.797</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:10.468</p></td>
<td><p>02:10.989</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:44.952</p></td>
<td><p>01:40.660</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.114</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>