[BACKEND] Refine v100 tests and fix mmav1 numwarps>1 hang issue (#971)

This PR

- Fix numWarps>1 hang issue
- add existing test cases in test_gemm.py to CI, and add a common flag
`valid_on_Volta` to determine whether the test case should be activated
on Volta or just skip.
  - Currently, the column-major cases are disabled.
 - Add test_core.py and other tests to Volta CI
   - the `test_printf.py` failed.
This commit is contained in:
Yan Chunwei
2022-12-09 23:41:22 +08:00
committed by GitHub
parent 793012b4c4
commit 24fd953f9a
3 changed files with 37 additions and 44 deletions

View File

@@ -89,7 +89,14 @@ jobs:
if: ${{matrix.runner[0] == 'self-hosted' && matrix.runner[1] == 'V100'}}
run: |
cd python/tests
pytest test_gemm.py::test_gemm_for_mmav1
pytest -k "not test_where_broadcast and not test_dot" test_core.py
pytest test_gemm.py
pytest test_backend.py
pytest test_reduce.py
pytest test_vecadd.py
pytest test_elementwise.py
pytest test_ext_elemwise.py
pytest test_transpose.py
- name: Run CXX unittests
run: |

View File

@@ -617,13 +617,15 @@ SmallVector<unsigned, 2> warpsPerTileV1(triton::DotOp dotOp,
bool changed = false;
do {
changed = false;
int pre = ret[0];
if (ret[0] * ret[1] < numWarps) {
ret[0] = std::clamp<unsigned>(ret[0] * 2, 1, shape[0] / shapePerWarp[0]);
changed = true;
changed = pre != ret[0];
}
if (ret[0] * ret[1] < numWarps) {
pre = ret[1];
ret[1] = std::clamp<unsigned>(ret[1] * 2, 1, shape[1] / shapePerWarp[1]);
changed = true;
changed = pre != ret[1];
}
} while (changed);
return ret;

View File

@@ -43,6 +43,9 @@ def matmul_no_scf_kernel(
for trans_b in [False, True]
])
def test_gemm_no_scf(SHAPE, NUM_WARPS, TRANS_A, TRANS_B):
if not valid_on_Volta(NUM_WARPS, TRANS_A, TRANS_B):
pytest.skip("Not valid on Volta")
SIZE_M, SIZE_N, SIZE_K = SHAPE
if (TRANS_A):
a = torch.randn((SIZE_K, SIZE_M), device='cuda', dtype=torch.float16).T
@@ -81,6 +84,9 @@ def test_gemm_no_scf(SHAPE, NUM_WARPS, TRANS_A, TRANS_B):
for trans_b in [False, True]
])
def test_gemm_no_scf_int8(SHAPE, NUM_WARPS, TRANS_A, TRANS_B):
if not valid_on_Volta(NUM_WARPS, TRANS_A, TRANS_B, is_int8=True):
pytest.skip("Not valid on Volta")
SIZE_M, SIZE_N, SIZE_K = SHAPE
if (TRANS_A):
@@ -195,6 +201,9 @@ def get_proper_err(a, b, golden):
[128, 64, 128, 4, 128, 64, 32, False, True],
])
def test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, TRANS_A, TRANS_B):
if not valid_on_Volta(NUM_WARPS, TRANS_A, TRANS_B):
pytest.skip("Not valid on Volta")
if (TRANS_A):
a = torch.randn((SIZE_K, SIZE_M), device='cuda', dtype=torch.float16).T
else:
@@ -270,6 +279,9 @@ def test_gemm_fp32(M, N, K, num_warps, block_M, block_N, block_K, allow_tf32):
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, accumulator, c_mask)
if not valid_on_Volta(num_warps, trans_a=False, trans_b=False, is_tf32=allow_tf32):
pytest.skip("Not valid on Volta")
# Configure the pytorch counterpart
torch.backends.cuda.matmul.allow_tf32 = allow_tf32
@@ -294,44 +306,16 @@ def test_gemm_fp32(M, N, K, num_warps, block_M, block_N, block_K, allow_tf32):
torch.testing.assert_close(c, golden, rtol=max(1e-4, 1.5 * golden_rel_err), atol=max(1e-4, 1.5 * golden_abs_err))
# NOTE this is useful only on Volta GPU.
@pytest.mark.parametrize('SIZE_M,SIZE_N,SIZE_K,NUM_WARPS,BLOCK_SIZE_M,BLOCK_SIZE_N,BLOCK_SIZE_K,TRANS_A,TRANS_B', [
# Non-forloop
[16, 16, 16, 1, 16, 16, 16, False, False],
[16, 16, 32, 1, 16, 16, 32, False, False],
[32, 16, 32, 1, 32, 16, 32, False, False],
[32, 32, 32, 1, 32, 32, 32, False, False],
[128, 32, 32, 1, 128, 32, 32, False, False],
# # split-K
[16, 16, 32, 1, 16, 16, 16, False, False],
[64, 64, 128, 1, 64, 64, 32, False, False],
# numWarps > 1
[32, 32, 64, 2, 32, 32, 32, False, False],
[64, 32, 64, 4, 64, 32, 64, False, False],
[128, 64, 128, 4, 128, 64, 128, False, False],
# [16, 16, 16, 16, 16, 16, 16, False, False], # wpt overflow issue, hang on Volta
# K-Forloop
# [16, 16, 64, 4, 8, 8, 8, False, False], # Wrap threads
[32, 32, 64, 4, 32, 32, 32, False, False], # Single shared encoding
# [16, 16, 128, 4, 16, 16, 16, False, False], # Single shared encoding and small k, hang on Volta
[64, 32, 128, 4, 64, 32, 64, False, False],
[128, 16, 128, 4, 128, 16, 32, False, False],
# [32, 16, 128, 4, 32, 16, 32, False, False], # hang on Volta
[32, 64, 128, 4, 32, 64, 32, False, False],
[32, 128, 256, 4, 32, 128, 64, False, False],
[64, 128, 64, 4, 64, 128, 32, False, False],
[64, 64, 128, 4, 64, 64, 32, False, False],
[128, 128, 64, 4, 128, 128, 32, False, False],
[128, 128, 128, 4, 128, 128, 32, False, False],
[128, 128, 256, 4, 128, 128, 64, False, False],
[128, 256, 128, 4, 128, 256, 32, False, False],
[256, 128, 64, 4, 256, 128, 16, False, False],
[128, 64, 128, 4, 128, 64, 32, False, False],
# [16, 16, 64, 4, 16, 16, 16, False, False], # hang on Volta
[32, 32, 64, 4, 32, 32, 32, False, False],
# trans
# [128, 64, 128, 4, 128, 64, 32, True, False],
# [128, 64, 128, 4, 128, 64, 32, False, True],
])
def test_gemm_for_mmav1(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, TRANS_A, TRANS_B):
test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLOCK_SIZE_K, TRANS_A, TRANS_B)
def valid_on_Volta(num_warps, trans_a, trans_b, is_int8=False, is_tf32=False):
'''
Tell whether the test case is valid on Volta GPU.
Some features are WIP, so the corresponding support are missing.
'''
if is_int8 or is_tf32:
return False
capability = torch.cuda.get_device_capability()
is_on_Volta = capability[0] < 8
# TODO[Superjomn]: Remove the constraints below when features are ready
is_feature_ready = not (trans_a or trans_b)
return is_on_Volta and is_feature_ready