[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-07-27 00:51:15 +00:00
parent bec0049ff5
commit 2663713aec
165 changed files with 292 additions and 292 deletions

View File

@@ -325,9 +325,9 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 15.999999 19.200000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 51.976 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.313 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 184.089886
1 384.0 614.400016 585.142862 153.600004
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 646.736871 163.839992
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 812.429770 415.222812 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 810.925276 412.971190 199.012395
97 12672.0 811.007961 412.097543 199.069228
93 12160.0 812.359066 405.333344 199.038365
94 12288.0 812.429770 415.222812 199.298541
95 12416.0 812.498981 411.296057 198.954424
96 12544.0 810.925276 412.971190 199.111113
97 12672.0 811.007961 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.958 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.839 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 47.396572 47.396572
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 66.485074
10 1536.0 79.526831 ... 81.355034 79.526831
11 1664.0 63.372618 ... 63.372618 62.492442
12 1792.0 72.983276 ... 72.983276 59.154861
13 1920.0 68.776119 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.494120 85.998493
16 2304.0 68.251065 ... 78.064941 77.307030
17 2432.0 71.125224 ... 86.979769 85.915795
18 2560.0 77.833728 ... 82.747477 81.715711
19 2688.0 84.295681 ... 90.966561 89.464755
20 2816.0 84.035084 ... 85.017948 83.233226
21 2944.0 82.237674 ... 83.198715 82.509987
22 3072.0 82.420822 ... 89.735509 87.651868
23 3200.0 83.333330 ... 91.168092 95.952022
24 3328.0 83.468170 ... 84.795401 84.895397
25 3456.0 81.849303 ... 90.586029 91.097818
26 3584.0 87.042978 ... 95.451583 97.787265
27 3712.0 85.785610 ... 89.194055 85.163978
28 3840.0 84.940091 ... 93.801526 87.148936
29 3968.0 92.864488 ... 87.159957 91.712842
30 4096.0 86.536250 ... 85.652663 90.626421
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 70.892307
14 2048.0 73.584279 ... 78.033565 76.959706
15 2176.0 83.155572 ... 87.494120 85.998493
16 2304.0 68.446623 ... 78.064941 77.057651
17 2432.0 71.125224 ... 85.915795 75.320281
18 2560.0 77.833728 ... 82.125311 81.512437
19 2688.0 83.737433 ... 90.532356 89.676257
20 2816.0 83.074685 ... 84.687779 84.035084
21 2944.0 81.698415 ... 84.040530 83.060049
22 3072.0 81.707223 ... 90.164177 89.310890
23 3200.0 84.544253 ... 96.969694 95.665176
24 3328.0 83.905938 ... 86.320498 85.602017
25 3456.0 79.508447 ... 91.824110 85.585527
26 3584.0 85.633710 ... 92.600816 95.756542
27 3712.0 84.159518 ... 93.100971 87.783251
28 3840.0 80.901241 ... 87.980905 92.236860
29 3968.0 87.913500 ... 91.747320 86.114283
30 4096.0 93.336389 ... 86.928580 85.271746
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 14.455 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 36.741 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.283 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.013 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -198,34 +198,34 @@ to download the full example code</p>
N Triton Torch Apex
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 337.814445 520.126988
3 2560.0 694.237267 362.477870 518.481028
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 458.751978
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 424.455959
9 5632.0 704.000002 398.725657 411.470331
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 686.754468 384.859062 382.293315
13 7680.0 678.895043 391.337574 386.415087
14 8192.0 648.871301 390.095241 379.918832
15 8704.0 621.714277 390.095225 379.465939
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 702.171410 378.092307 501.551037
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 383.251446 451.972420
7 4608.0 670.254540 396.387087 428.651163
8 5120.0 688.403381 395.748783 420.102563
9 5632.0 704.000002 396.969169 415.262685
10 6144.0 702.171410 402.885254 411.313806
11 6656.0 700.631610 398.861429 398.861429
12 7168.0 686.754468 388.772874 384.859062
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 390.095241 374.491442
15 8704.0 627.315309 396.763538 380.502740
16 9216.0 604.327881 405.098894 383.002605
17 9728.0 585.142883 409.599987 382.427505
18 10240.0 563.024047 409.600010 382.803739
19 10752.0 546.133312 410.577576 380.601764
20 11264.0 531.634232 398.725657 370.831272
17 9728.0 585.142883 409.599987 383.369452
18 10240.0 564.965524 409.600010 381.911416
19 10752.0 546.133312 411.559798 381.445676
20 11264.0 531.634232 403.185684 373.908711
21 11776.0 519.052343 409.599991 377.587162
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 503.194086 410.420828 377.163903
24 13312.0 494.180982 408.030638 376.976995
25 13824.0 481.882350 412.656711 379.389355
26 14336.0 471.967074 399.609753 371.760140
27 14848.0 461.297068 405.406157 374.712936
28 15360.0 454.269882 406.887417 378.092307
29 15872.0 447.098578 407.627589 376.225175
22 12288.0 513.336807 413.911572 382.505826
23 12800.0 504.433489 410.420828 377.859783
24 13312.0 494.180982 404.159395 377.645399
25 13824.0 481.882350 411.122660 378.739711
26 14336.0 471.967074 400.307157 372.969090
27 14848.0 461.297068 404.027214 374.712936
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.098578 405.027112 375.668625
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 40.298 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 38.066 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.083 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.075 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.249 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>18:18.301</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:31.058</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>07:14.455</p></td>
<td><p>06:36.741</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:40.298</p></td>
<td><p>05:38.066</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:30.958</p></td>
<td><p>03:30.839</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:51.976</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.283</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.249</p></td>
<td><p>01:45.313</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.083</p></td>
<td><p>00:00.075</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.013</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>