[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-07-27 00:51:15 +00:00
parent bec0049ff5
commit 2663713aec
165 changed files with 292 additions and 292 deletions

View File

@@ -330,7 +330,7 @@ for different problem sizes.</p>
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
9 2097152.0 722.823517 702.171410
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.762 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.802 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 190.511628
0 256.0 512.000001 512.000001 186.181817
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 814.111783 415.661740 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.546756 199.209928
97 12672.0 812.633240 412.097543 199.264875
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 416.101597 199.197579
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.457 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.669 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,13 +568,13 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
@@ -583,27 +583,27 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.450733
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.125224 ... 84.621881 84.877538
18 2560.0 77.833728 ... 81.512437 80.709358
19 2688.0 83.737433 ... 90.102270 89.676257
20 2816.0 83.392363 ... 83.712490 82.916747
21 2944.0 82.646820 ... 83.198715 82.921853
22 3072.0 82.661468 ... 89.451983 88.335577
23 3200.0 83.879425 ... 95.665176 95.096582
24 3328.0 83.226931 ... 85.398926 85.500351
25 3456.0 81.932484 ... 86.226274 88.790274
26 3584.0 87.211821 ... 94.647779 97.628001
27 3712.0 86.416391 ... 85.858190 90.241499
28 3840.0 81.019778 ... 89.259080 91.473945
29 3968.0 87.066671 ... 85.331427 90.589410
30 4096.0 91.772801 ... 91.678778 90.902630
15 2176.0 83.155572 ... 86.367588 85.269692
16 2304.0 68.056616 ... 76.809875 76.563695
17 2432.0 71.125224 ... 83.864074 84.877538
18 2560.0 77.833728 ... 81.108913 80.908642
19 2688.0 83.552988 ... 89.888756 89.464755
20 2816.0 83.712490 ... 83.074685 82.446516
21 2944.0 81.967162 ... 82.237674 82.237674
22 3072.0 82.540970 ... 89.030036 89.451983
23 3200.0 84.432717 ... 96.240602 95.665176
24 3328.0 82.939284 ... 83.130825 84.795401
25 3456.0 81.932484 ... 91.615417 91.200871
26 3584.0 83.954614 ... 95.858629 98.483450
27 3712.0 82.491612 ... 87.937800 88.170647
28 3840.0 85.070769 ... 86.875096 91.473945
29 3968.0 87.066671 ... 91.472214 87.723894
30 4096.0 93.924229 ... 92.436452 89.299883
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 22.723 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 20.621 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 311.088617
0 1024.0 307.200008 99.096776 307.200008
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 327.679984
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 511.999982 191.501303 319.168834
5 3584.0 551.384634 208.271186 309.410081
6 4096.0 568.231237 220.412561 300.623865
7 4608.0 498.162157 231.849059 287.999990
8 5120.0 525.128191 242.845844 287.775181
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.410903 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 273.066667 289.887291
2 2048.0 420.102553 161.684218 338.979315
3 2560.0 461.954908 182.857144 328.556154
4 3072.0 511.999982 191.501303 315.076914
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 568.231237 220.412561 296.990947
7 4608.0 498.162157 231.849059 289.507855
8 5120.0 525.128191 242.845844 286.433562
9 5632.0 536.380957 243.545956 290.683877
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 507.469040 261.844750 288.160801
13 7680.0 481.253256 260.338991 276.756754
14 8192.0 459.364487 269.326017 286.600589
15 8704.0 416.958106 267.472468 284.599455
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.433562 290.153487
18 10240.0 446.836366 286.433562 288.112552
19 10752.0 428.651173 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.696898 253.674644 288.180121
24 13312.0 412.242569 252.759501 290.179836
25 13824.0 404.604870 257.190689 292.571423
26 14336.0 397.761846 254.862216 286.481278
27 14848.0 384.414233 257.293872 289.246765
28 15360.0 374.634130 257.790220 286.656296
29 15872.0 366.982663 262.890274 291.452168
20 11264.0 429.104745 245.313973 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.673582 294.911986
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 398.222222 254.673567 286.242939
27 14848.0 383.999990 257.108233 289.012175
28 15360.0 374.634130 257.610071 288.000007
29 15872.0 366.982663 262.890274 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.105 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 9.590 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:42.057</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:36.693</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:22.723</p></td>
<td><p>05:20.621</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.457</p></td>
<td><p>03:21.669</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.105</p></td>
<td><p>02:09.590</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:43.762</p></td>
<td><p>01:44.802</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>