[PYTHON][TESTS][DOC] Various improvement of the API and code quality:
* Simplified `triton.kernel` API to achieve lower latency: > .data_ptr() must now be passed as kernel argument. No more implicit conversion from torch.tensor > compilation options are now constant attributes, i.e., opt.d('VAR') becomes opt.VAR > torch.device must now be passed explicitly to triton.kernel (no longer inferred from torch.tensor arguments) * C++ tests moved to `python/tests/` * C++ tutorial created in `tutorials/` * Python tutorial created in python/tutorials/ * Version changed to 1.0alpha * No longer copying C++ headers into the Python package * added python/triton/ops/ package for pre-written Triton ops
This commit is contained in:
97
python/triton/ops/matmul.c
Normal file
97
python/triton/ops/matmul.c
Normal file
@@ -0,0 +1,97 @@
|
||||
#define STM 8
|
||||
#define STN 8
|
||||
|
||||
__global__ void matmul(TYPE * A __noalias __readonly __aligned(16),
|
||||
TYPE * B __noalias __readonly __aligned(16),
|
||||
TYPE * C __noalias __aligned(16),
|
||||
float alpha,
|
||||
int M,
|
||||
int N,
|
||||
int K __multipleof(16),
|
||||
int lda __multipleof(LDA_POW2_DIV),
|
||||
int ldb __multipleof(LDB_POW2_DIV),
|
||||
int ldc __multipleof(LDC_POW2_DIV),
|
||||
int* locks) {
|
||||
// prologue
|
||||
int pid = get_program_id(0);
|
||||
int pidz = get_program_id(2);
|
||||
int gridm = (M + TM - 1) / TM;
|
||||
int gridn = (N + TN - 1) / TN;
|
||||
|
||||
// swizzle for better L2 performance
|
||||
int width = STM*gridn;
|
||||
int stm = pid / width;
|
||||
int RSTM = min(gridm - stm*STM, STM);
|
||||
int stn = (pid % width) / (RSTM*STN);
|
||||
int RSTN = min(gridn - stn*STN, STN);
|
||||
int laneid = pid % (RSTM * RSTN);
|
||||
int lanem = laneid / RSTN;
|
||||
int lanen = laneid % RSTN;
|
||||
int pidm = stm*STM + lanem;
|
||||
int pidn = stn*STN + lanen;
|
||||
int rm[TM] = pidm * TM + 0 ... TM;
|
||||
int rn[TN] = pidn * TN + 0 ... TN;
|
||||
|
||||
// split-k for better parrallelism
|
||||
K = K / TZ;
|
||||
int rk[TK] = 0 ... TK;
|
||||
// pointers to operands
|
||||
int offa[TM, TK] = (pidz*K + rk[newaxis, :]) * STRIDE_AK + rm[:, newaxis] * STRIDE_AM;
|
||||
int offb[TK, TN] = (pidz*K + rk[:, newaxis]) * STRIDE_BK + rn[newaxis, :] * STRIDE_BN;
|
||||
TYPE* pa[TM, TK] = A + offa;
|
||||
TYPE* pb[TK, TN] = B + offb;
|
||||
|
||||
// prefetches operands
|
||||
bool checka[TM, TK] = rk[newaxis, :] < K;
|
||||
bool checkb[TK, TN] = rk[:, newaxis] < K;
|
||||
TYPE a[TM, TK] = checka ? *pa : 0;
|
||||
TYPE b[TK, TN] = checkb ? *pb : 0;
|
||||
pa += TK * STRIDE_AK;
|
||||
pb += TK * STRIDE_BK;
|
||||
|
||||
// reduction loop
|
||||
float acc[TM, TN] = 0;
|
||||
for(int k = K; k > 0; k -= TK){
|
||||
#if (IS_TK_DIV_K==1)
|
||||
bool checkk[TK] = k > TK;
|
||||
#else
|
||||
bool checkk[TK] = rk < k - TK;
|
||||
#endif
|
||||
bool checka[TM, TK] = checkk[newaxis, :];
|
||||
bool checkb[TK, TN] = checkk[:, newaxis];
|
||||
acc += a @ b;
|
||||
#if (IS_TK_DIV_K==1)
|
||||
a = *?(checka)pa;
|
||||
b = *?(checkb)pb;
|
||||
#else
|
||||
a = checka ? *pa : 0;
|
||||
b = checkb ? *pb : 0;
|
||||
#endif
|
||||
pa += TK * STRIDE_AK;
|
||||
pb += TK * STRIDE_BK;
|
||||
}
|
||||
acc = acc * alpha;
|
||||
TYPE c[TM, TN] = acc;
|
||||
|
||||
// epilogue
|
||||
int rcm[TM] = pidm * TM + 0 ... TM;
|
||||
int rcn[TN] = pidn * TN + 0 ... TN;
|
||||
int offc[TM, TN] = rcm[:, newaxis] * ldc + rcn[newaxis, :];
|
||||
TYPE* pc[TM, TN] = C + offc;
|
||||
bool checkc[TM, TN] = rcm[:, newaxis] < M && rcn[newaxis, :] < N;
|
||||
#if (TZ==1)
|
||||
*?(checkc) pc = c;
|
||||
#else
|
||||
// accumulate partial result using spin-locks
|
||||
int *plock = locks + rid;
|
||||
int *pcount = plock + get_num_programs(0) * get_num_programs(1);
|
||||
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
|
||||
int count = *pcount;
|
||||
if(count == 0)
|
||||
*?(checkc) pc = c;
|
||||
else
|
||||
*?(checkc) pc = c + *?(checkc)pc;
|
||||
atomic_xchg(pcount, (count + 1) % TZ);
|
||||
atomic_xchg(plock, 0);
|
||||
#endif
|
||||
}
|
Reference in New Issue
Block a user