[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-28 00:54:08 +00:00
parent 79bb9e69b7
commit 287ed5ceeb
167 changed files with 282 additions and 282 deletions

View File

@@ -324,13 +324,13 @@ for different problem sizes.</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
0 4096.0 8.000000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 31.999999
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.509 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.741 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -378,10 +378,10 @@ We will then compare its performance against (1) <code class="code docutils lite
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.631953
94 12288.0 812.429770 415.661740 198.895304
94 12288.0 812.429770 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 812.566838 412.971190 198.864492
97 12672.0 811.007961 412.097543 198.873965
96 12544.0 810.925276 412.546756 198.815254
97 12672.0 811.007961 411.888249 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 29.799 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 2.978909
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
6 1024.0 51.150050 ... 53.773130 53.773130
7 1152.0 45.242181 ... 48.161033 48.161033
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
9 1408.0 64.138541 ... 69.009825 67.305878
10 1536.0 80.430545 ... 81.355034 78.643199
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 71.257735
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 68.776119 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.115360 85.632545
15 2176.0 83.500614 ... 87.876193 86.367588
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 75.320281
18 2560.0 77.833728 ... 82.539044 81.310171
19 2688.0 83.737433 ... 90.316801 89.254248
20 2816.0 79.806423 ... 84.116121 83.873477
21 2944.0 81.298583 ... 83.060049 83.337844
22 3072.0 78.643199 ... 88.335577 86.315709
23 3200.0 82.368085 ... 96.676741 95.665176
24 3328.0 83.130825 ... 84.695641 84.397770
25 3456.0 82.015834 ... 91.097818 90.892410
26 3584.0 84.865870 ... 95.451583 90.367227
27 3712.0 84.658765 ... 88.955779 87.018592
28 3840.0 84.485870 ... 89.802683 88.473602
29 3968.0 92.864488 ... 87.066671 89.493168
30 4096.0 88.417474 ... 86.258181 89.898012
17 2432.0 71.305746 ... 86.179335 85.653855
18 2560.0 77.833728 ... 82.747477 81.108913
19 2688.0 83.277839 ... 91.185232 89.888756
20 2816.0 80.173175 ... 84.035084 83.712490
21 2944.0 82.102191 ... 82.921853 82.784108
22 3072.0 81.005868 ... 89.310890 88.335577
23 3200.0 84.656085 ... 96.530922 95.380032
24 3328.0 82.843841 ... 85.602017 84.298943
25 3456.0 81.189898 ... 91.928814 88.986281
26 3584.0 86.540320 ... 88.149642 93.273228
27 3712.0 85.382349 ... 81.415926 87.937800
28 3840.0 81.198237 ... 86.063813 90.058629
29 3968.0 86.911637 ... 91.609561 86.175099
30 4096.0 93.206754 ... 82.848854 84.573239
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 34.417 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 7.789 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.284 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -196,21 +196,21 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm:
N Triton Torch Apex
0 1024.0 585.142849 277.694907 468.114273
0 1024.0 585.142849 277.694907 481.882344
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 334.367358 520.126988
3 2560.0 694.237267 365.714281 512.000013
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 448.000001
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 415.262685
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 386.154893
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 371.308771
5 3584.0 725.873439 384.859062 458.751978
6 4096.0 728.177767 381.023256 458.293714
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 395.228063 413.357796
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 700.631610 400.360920 398.861429
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 392.587863 387.634072
14 8192.0 639.375598 393.609605 372.363633
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
@@ -218,14 +218,14 @@ to download the full example code</p>
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 513.336807 413.911572 383.251457
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
24 13312.0 494.180982 405.699062 376.310952
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.098578 406.974373 376.783377
29 15872.0 447.887117 406.974373 376.225175
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 39.380 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 32.611 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -548,7 +548,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.072 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.009 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.254 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:30.409</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:56.551</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:34.417</p></td>
<td><p>07:07.789</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:39.380</p></td>
<td><p>05:32.611</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:30.010</p></td>
<td><p>03:29.799</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.509</p></td>
<td><p>01:45.741</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.284</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.254</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.072</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.009</p></td>
<td><p>00:00.073</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>