[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-28 00:54:08 +00:00
parent 79bb9e69b7
commit 287ed5ceeb
167 changed files with 282 additions and 282 deletions

View File

@@ -321,7 +321,7 @@ for different problem sizes.</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 8.000000 9.600000
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 32.117 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 39.198 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.209928
97 12672.0 812.633240 412.097543 199.264875
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 814.163950 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 20.245 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 20.954 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 15.420235
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.155572 ... 86.367588 85.632545
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 84.367759
18 2560.0 78.019048 ... 80.908642 81.108913
19 2688.0 83.737433 ... 89.044730 88.628636
20 2816.0 79.587973 ... 82.916747 83.233226
21 2944.0 81.564701 ... 82.373605 82.921853
22 3072.0 82.181572 ... 89.451983 87.313963
23 3200.0 83.116885 ... 92.753621 91.298148
24 3328.0 80.617354 ... 84.895397 84.596116
25 3456.0 82.099354 ... 91.097818 90.586029
26 3584.0 82.189576 ... 91.563533 95.047985
27 3712.0 85.309435 ... 90.981189 87.170458
28 3840.0 81.079177 ... 85.070769 91.097196
29 3968.0 85.752131 ... 91.266964 85.751184
30 4096.0 93.336389 ... 92.245860 88.243079
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.467336 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.500614 ... 85.998493 85.632545
16 2304.0 68.348707 ... 76.809875 76.563695
17 2432.0 71.305746 ... 75.118889 84.877538
18 2560.0 77.833728 ... 81.310171 80.709358
19 2688.0 83.369354 ... 90.316801 89.254248
20 2816.0 83.074685 ... 83.552120 82.602666
21 2944.0 81.832567 ... 80.251257 81.967162
22 3072.0 82.062468 ... 88.473602 88.335577
23 3200.0 82.262212 ... 91.822093 92.352095
24 3328.0 83.130825 ... 84.596116 84.397770
25 3456.0 80.300370 ... 88.595129 90.994998
26 3584.0 87.594146 ... 95.756542 97.628001
27 3712.0 85.163978 ... 86.304403 89.513749
28 3840.0 80.139129 ... 91.701494 85.930069
29 3968.0 90.859224 ... 84.040329 89.657558
30 4096.0 86.339677 ... 93.206754 90.200084
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 16.690 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 19.110 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 311.088617
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 161.684218 338.979315
3 2560.0 461.954908 182.314537 323.368411
0 1024.0 311.088617 99.497980 319.168844
1 1536.0 354.461542 133.565214 341.333333
2 2048.0 427.408686 159.067963 323.368435
3 2560.0 461.954908 181.775141 328.556154
4 3072.0 511.999982 191.005181 319.168834
5 3584.0 554.941930 208.271186 306.106777
6 4096.0 568.231237 219.919464 292.571431
7 4608.0 498.162157 231.849059 289.507855
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 262.243907 288.160801
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 269.326017 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.615388 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 398.222222 254.862216 286.481278
27 14848.0 384.414233 257.293872 289.246765
28 15360.0 374.634130 257.610071 287.550706
29 15872.0 366.805973 262.708969 291.229369
5 3584.0 554.941930 207.267476 310.527060
6 4096.0 568.231237 219.919464 302.473845
7 4608.0 502.690905 233.316456 286.507772
8 5120.0 531.948056 241.414550 284.444444
9 5632.0 545.032265 244.426754 291.310338
10 6144.0 548.163546 250.775512 286.879370
11 6656.0 532.479975 256.000009 286.279570
12 7168.0 513.528374 256.764187 281.098038
13 7680.0 486.332448 264.827585 283.569230
14 8192.0 464.794337 260.407952 278.876591
15 8704.0 416.958106 267.472468 285.377055
16 9216.0 431.157889 272.059034 287.999990
17 9728.0 438.857162 280.278512 289.308559
18 10240.0 446.836366 287.102804 291.530244
19 10752.0 432.966444 246.699797 290.922209
20 11264.0 429.104745 246.432094 288.512281
21 11776.0 423.089806 249.007923 288.981596
22 12288.0 421.905564 254.234486 294.617366
23 12800.0 415.135142 253.884294 289.811310
24 13312.0 411.711355 253.160074 289.916513
25 13824.0 405.098897 256.991469 292.056329
26 14336.0 397.761846 255.619613 288.886653
27 14848.0 382.351933 257.293872 289.012175
28 15360.0 377.318326 258.151252 287.438599
29 15872.0 369.832994 261.986243 290.562936
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.483 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.629 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:21.546</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:30.902</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:16.690</p></td>
<td><p>05:19.110</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:20.245</p></td>
<td><p>03:20.954</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.483</p></td>
<td><p>02:11.629</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:32.117</p></td>
<td><p>01:39.198</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>