[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-14 00:44:57 +00:00
parent 9d65bf62fb
commit 2a53636c23
158 changed files with 346 additions and 346 deletions

View File

@@ -322,12 +322,12 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
1 8192.0 15.999999 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.056 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.436 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 646.736871 163.839992
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 149.853661
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 646.736871 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.733401
94 12288.0 812.429770 415.222812 198.995960
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 198.815254
97 12672.0 812.633240 412.097543 199.069228
93 12160.0 812.359066 406.179533 198.733401
94 12288.0 814.111783 416.101597 199.096718
95 12416.0 814.163950 412.577363 198.755369
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.516771 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.579 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.222 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,41 +569,41 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 15.420235
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
4 768.0 31.597714 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 37.971025
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.809875 76.319081
17 2432.0 71.125224 ... 84.621881 84.115159
18 2560.0 77.833728 ... 81.310171 80.313727
19 2688.0 83.369354 ... 89.782378 89.254248
20 2816.0 83.552120 ... 83.792906 82.446516
21 2944.0 81.967162 ... 81.698415 82.102191
22 3072.0 81.943708 ... 88.473602 88.197981
23 3200.0 84.432717 ... 95.522391 94.955488
24 3328.0 83.516586 ... 83.226931 83.710812
25 3456.0 81.683457 ... 90.994998 84.597660
26 3584.0 83.954614 ... 95.553020 87.299148
27 3712.0 84.159518 ... 83.178475 88.248537
28 3840.0 80.255442 ... 87.424508 91.549669
29 3968.0 86.973584 ... 89.988156 83.980685
30 4096.0 92.627833 ... 86.258181 85.298843
6 1024.0 49.932191 ... 52.428801 51.150050
7 1152.0 43.911529 ... 45.938215 45.242181
8 1280.0 49.951220 ... 55.351349 55.351349
9 1408.0 62.664092 ... 65.684049 65.684049
10 1536.0 78.643199 ... 77.778988 77.778988
11 1664.0 62.061463 ... 61.217089 60.803457
12 1792.0 71.588687 ... 70.246402 70.246402
13 1920.0 68.098521 ... 68.776119 68.776119
14 2048.0 72.315584 ... 75.234154 75.234154
15 2176.0 81.472263 ... 84.199364 83.500614
16 2304.0 67.100763 ... 75.119093 74.883608
17 2432.0 69.713308 ... 83.614477 83.119713
18 2560.0 76.204654 ... 79.533982 79.341404
19 2688.0 82.823267 ... 88.216412 88.011732
20 2816.0 82.759409 ... 81.827785 81.674548
21 2944.0 81.034195 ... 81.431424 81.166173
22 3072.0 81.121923 ... 87.381335 87.516392
23 3200.0 83.550913 ... 94.814812 94.256261
24 3328.0 82.369902 ... 83.808259 83.613586
25 3456.0 80.783132 ... 90.484366 90.281712
26 3584.0 86.498694 ... 97.840469 97.416461
27 3712.0 84.730571 ... 89.674457 92.156222
28 3840.0 84.228485 ... 91.247522 91.172297
29 3968.0 92.372393 ... 90.555796 90.354633
30 4096.0 93.142072 ... 92.372834 91.678778
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 54.053 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 33.271 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.118 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.119 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 315.076934
1 1536.0 351.085717 134.050910 341.333333
2 2048.0 423.724127 159.067963 321.254900
3 2560.0 461.954908 182.314537 326.808501
4 3072.0 515.580429 191.501303 316.429186
5 3584.0 547.872604 207.768111 308.301075
6 4096.0 568.231237 220.907859 300.623865
7 4608.0 500.416301 232.336141 288.751954
8 5120.0 529.655159 243.809526 289.129408
9 5632.0 540.671974 244.426754 291.310338
10 6144.0 548.163546 250.775512 288.000001
11 6656.0 536.053693 255.590406 286.279570
12 7168.0 516.612607 253.734520 277.919225
13 7680.0 490.212752 266.358392 284.444450
14 8192.0 464.794337 258.354805 278.481578
15 8704.0 416.958106 267.472468 284.987724
16 9216.0 431.157889 272.394084 289.887291
17 9728.0 439.683593 279.942444 288.950501
18 10240.0 447.650282 287.102804 289.811322
19 10752.0 430.079980 246.699797 289.941565
20 11264.0 430.471331 245.536784 286.069848
21 11776.0 419.946507 249.447482 288.981596
22 12288.0 418.909088 254.673582 294.617366
23 12800.0 414.016170 253.884294 287.910035
24 13312.0 411.181478 252.360194 289.129403
25 13824.0 404.112047 256.991469 291.799461
26 14336.0 395.475867 256.000002 289.129416
27 14848.0 384.829370 257.479779 288.777966
28 15360.0 376.547496 258.332158 286.656296
29 15872.0 369.116300 261.446802 290.562936
0 1024.0 303.407414 98.303995 311.088617
1 1536.0 344.523365 132.604320 338.201833
2 2048.0 416.542360 157.538467 332.108094
3 2560.0 451.764698 181.238943 325.079368
4 3072.0 508.468972 190.020625 319.168834
5 3584.0 540.981122 206.769233 307.199992
6 4096.0 561.737163 219.919464 294.323343
7 4608.0 489.345125 230.880998 290.267724
8 5120.0 518.481012 242.366855 288.450695
9 5632.0 534.260858 243.545956 290.683877
10 6144.0 542.117638 249.925419 286.879370
11 6656.0 532.479975 254.775119 285.767438
12 7168.0 515.065851 252.988236 277.024148
13 7680.0 488.912481 265.590783 283.569230
14 8192.0 463.698115 257.677592 277.303250
15 8704.0 408.798442 266.448988 284.212242
16 9216.0 421.302872 271.391419 289.129410
17 9728.0 430.760152 278.939059 288.237038
18 10240.0 438.074849 286.100109 289.469963
19 10752.0 425.821771 245.526173 288.967529
20 11264.0 426.397479 244.426754 285.465683
21 11776.0 418.082825 248.133438 288.097854
22 12288.0 416.542386 253.578674 293.737063
23 12800.0 412.348979 252.839495 288.721817
24 13312.0 409.862733 251.466350 288.607034
25 13824.0 403.130022 256.197690 291.031592
26 14336.0 395.021816 254.862216 288.402346
27 14848.0 384.829370 256.552919 288.194100
28 15360.0 376.547496 257.430175 286.656296
29 15872.0 369.474279 260.731015 290.120338
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 9.564 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.637 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:13.370</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:52.685</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:54.053</p></td>
<td><p>05:33.271</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.579</p></td>
<td><p>03:22.222</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:09.564</p></td>
<td><p>02:13.637</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.056</p></td>
<td><p>01:43.436</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.118</p></td>
<td><p>00:00.119</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>