[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-06-16 00:46:38 +00:00
parent 4e12c1cfa5
commit 2c4a040453
156 changed files with 252 additions and 252 deletions

View File

@@ -323,7 +323,7 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 38.400001
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.289 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.459 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -375,16 +375,16 @@ We will then compare its performance against (1) <code class="code docutils lite
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.733401
94 12288.0 814.111783 415.222812 198.995960
95 12416.0 812.498981 411.722274 198.655991
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.097543 198.873965
93 12160.0 814.058574 406.603966 198.429370
94 12288.0 814.111783 415.661740 198.694297
95 12416.0 812.498981 412.149375 198.358474
96 12544.0 812.566838 412.758863 198.618504
97 12672.0 812.633240 412.097543 198.679085
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.318 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.196 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
5 896.0 37.971025 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 65.684049
10 1536.0 79.526831 ... 79.526831 78.643199
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 69.467336 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.056616 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.653855 84.367759
18 2560.0 77.833728 ... 81.310171 80.511054
19 2688.0 83.737433 ... 90.102270 89.044730
20 2816.0 83.074685 ... 83.873477 82.759409
21 2944.0 82.237674 ... 83.337844 83.060049
22 3072.0 81.121923 ... 88.750943 87.787755
23 3200.0 84.321474 ... 96.096095 95.952022
24 3328.0 83.516586 ... 84.052885 84.795401
25 3456.0 82.604067 ... 91.407671 91.097818
26 3584.0 85.633710 ... 92.600816 95.350361
27 3712.0 84.159518 ... 86.867254 88.640059
28 3840.0 81.138664 ... 90.723546 91.930177
29 3968.0 91.885495 ... 80.120775 82.700061
30 4096.0 91.741443 ... 85.434583 87.211002
11 1664.0 63.150256 ... 62.492442 62.061463
12 1792.0 72.983276 ... 59.154861 71.135597
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 86.367588 85.632545
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.215370 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.186525 ... 90.102270 89.254248
20 2816.0 81.674548 ... 83.552120 82.602666
21 2944.0 81.967162 ... 82.237674 82.102191
22 3072.0 81.943708 ... 89.310890 88.681451
23 3200.0 84.880639 ... 89.761569 94.955488
24 3328.0 83.468170 ... 84.895397 84.795401
25 3456.0 82.519518 ... 91.407671 90.586029
26 3584.0 86.540320 ... 94.349836 93.564405
27 3712.0 86.341700 ... 87.094458 87.322855
28 3840.0 83.402717 ... 92.545605 85.201850
29 3968.0 92.793868 ... 87.913500 86.788006
30 4096.0 91.397840 ... 92.372834 87.324485
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 53.278 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 56.098 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.109 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.110 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 162.217818 336.657521
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 511.999982 191.501303 320.556515
5 3584.0 551.384634 208.271186 308.301075
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 536.380957 243.107920 290.683877
10 6144.0 544.118087 248.661056 285.767458
11 6656.0 527.207907 256.410903 286.279570
12 7168.0 505.976473 261.844750 288.644296
13 7680.0 482.513091 260.707203 277.590365
14 8192.0 460.440290 269.326017 286.600589
15 8704.0 416.958106 267.815384 285.377055
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 446.836366 286.767793 290.840246
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 420.102553 162.217818 325.509933
3 2560.0 461.954908 182.314537 325.079368
4 3072.0 511.999982 191.501303 317.793096
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 495.928261 231.849059 286.507772
8 5120.0 522.893618 242.845844 283.787523
9 5632.0 536.380957 243.545956 290.683877
10 6144.0 542.117638 248.661056 285.214712
11 6656.0 525.473708 256.410903 286.793541
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 481.253256 260.707203 277.590365
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 438.857162 279.942444 288.950501
18 10240.0 446.836366 286.767793 290.496460
19 10752.0 429.364408 246.464170 290.267711
20 11264.0 429.104745 245.313973 285.767446
21 11776.0 421.826879 249.227509 288.686414
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.135142 253.465340 288.721817
24 13312.0 412.242569 252.559690 289.916513
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.673567 286.242939
27 14848.0 383.999990 257.108233 289.246765
28 15360.0 374.634130 257.610071 287.550706
29 15872.0 366.982663 262.890274 291.229369
23 12800.0 415.135142 253.256381 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.190689 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 384.207000 257.293872 289.012175
28 15360.0 374.253788 257.610071 287.326580
29 15872.0 366.982663 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.046 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.651 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:15.039</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:15.515</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:53.278</p></td>
<td><p>05:56.098</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.318</p></td>
<td><p>03:23.196</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.046</p></td>
<td><p>02:12.651</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:45.289</p></td>
<td><p>01:43.459</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.109</p></td>
<td><p>00:00.110</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>