[python][examples] added template for blocksparse
This commit is contained in:
158
python/examples/blocksparse.py
Normal file
158
python/examples/blocksparse.py
Normal file
@@ -0,0 +1,158 @@
|
||||
import tensorflow as tf
|
||||
import triton
|
||||
import numpy as np
|
||||
|
||||
src = '''
|
||||
#if AT == 1
|
||||
#define USE_A ^a
|
||||
#define STRIDE_AK lda
|
||||
#define STRIDE_AM 1
|
||||
#define BROADCAST_AK :, newaxis
|
||||
#define BROADCAST_AM newaxis, :
|
||||
#define SHAPE_A TK, TM
|
||||
#else
|
||||
#define USE_A a
|
||||
#define STRIDE_AK 1
|
||||
#define STRIDE_AM lda
|
||||
#define BROADCAST_AK newaxis, :
|
||||
#define BROADCAST_AM :, newaxis
|
||||
#define SHAPE_A TM, TK
|
||||
#endif
|
||||
|
||||
#if BT == 1
|
||||
#define USE_B ^b
|
||||
#define STRIDE_BK 1
|
||||
#define STRIDE_BM ldb
|
||||
#define BROADCAST_BN newaxis, :
|
||||
#define BROADCAST_BK :, newaxis
|
||||
#define SHAPE_B TN, TK
|
||||
#else
|
||||
#define USE_B b
|
||||
#define STRIDE_BK ldb
|
||||
#define STRIDE_BM 1
|
||||
#define BROADCAST_BN :, newaxis
|
||||
#define BROADCAST_BK newaxis, :
|
||||
#define SHAPE_B TK, TN
|
||||
#endif
|
||||
|
||||
void dot (TYPE* A __readonly __noalias __align(16),
|
||||
TYPE* B __readonly __noalias __align(16),
|
||||
TYPE* C __writeonly __noalias __align(16),
|
||||
int lda, int ldb, int ldc,
|
||||
int N, int* lut,
|
||||
int* locks, int nlocks) {
|
||||
int ridx = get_program_id(0);
|
||||
float c[TM, TN] = 0;
|
||||
int rka[TK] = 0 ... TK;
|
||||
int rkb[TK] = 0 ... TK;
|
||||
// load LUT header
|
||||
int *header = lut + get_program_id(1) * 4;
|
||||
int offset = *(header + 0);
|
||||
int K = *(header + 1);
|
||||
int column = *(header + 2);
|
||||
int lockid = *(header + 3);
|
||||
int *plut = lut + offset * 2;
|
||||
int offx = ridx;
|
||||
int offy = 0;
|
||||
// compute x, y offsets
|
||||
int rxa[TM] = offx * TM + (0 ... TM);
|
||||
int ryb[TN] = offy * TN + (0 ... TN);
|
||||
// bounds checking
|
||||
bool checka[SHAPE_A] = (rxa < N)[:, newaxis];
|
||||
bool checkb[SHAPE_B] = 1;
|
||||
// base offset
|
||||
int offa[SHAPE_A] = rxa[BROADCAST_AM] * STRIDE_AM + rka[BROADCAST_AK] * STRIDE_AK;
|
||||
int offb[SHAPE_B] = ryb[BROADCAST_BN] * STRIDE_BN + rkb[BROADCAST_BK] * STRIDE_BK;
|
||||
for(int k = K; k > 0; k -= 1) {
|
||||
// fetch block indices
|
||||
int ak = *(plut + 0);
|
||||
int bk = *(plut + 1);
|
||||
lut += 2;
|
||||
// compute pointers to blocks
|
||||
TYPE* pa[SHAPE_A] = A + offa + ak * TK * lda;
|
||||
TYPE* pb[SHAPE_B] = B + offb + bk * TK * TN;
|
||||
// load blocks
|
||||
TYPE a[SHAPE_A] = checka ? *pa : 0;
|
||||
TYPE b[SHAPE_B] = *pb;
|
||||
// multiply blocks
|
||||
c += USE_A @ USE_B;
|
||||
}
|
||||
int rxc[TM] = ridx * TM + (0 ... TM);
|
||||
int ryc[TN] = column * TN + (0 ... TN);
|
||||
TYPE* pc[TM, TN] = C + rxc[:, newaxis] + ryc[newaxis, :]*ldc;
|
||||
bool checkc[TM, TN] = (rxc < N)[:, newaxis];
|
||||
if(lockid == 0) {
|
||||
*?(checkc) pc = c;
|
||||
}
|
||||
else {
|
||||
int *plock = locks + ridx*nlocks + lockid - 1;
|
||||
int *pcount = plock + get_num_program(0)*nlocks;
|
||||
while(__atomic_cas(plock, 0, 1));
|
||||
int count = *pcount;
|
||||
if(count == 0)
|
||||
*?(checkc) pc = c;
|
||||
else
|
||||
*?(checkc) pc = c + *pc;
|
||||
__atomic_exch(pcount, 1);
|
||||
__atomic_exch(plock, 0);
|
||||
}
|
||||
}
|
||||
'''
|
||||
|
||||
|
||||
# std::string dot::triton_c_src_dw() const {
|
||||
# bool AT = (op_ == WGRAD);
|
||||
# bool BT = (op_ == FPROP);
|
||||
# std::string usea = AT ? "trans(a)" : "a";
|
||||
# std::string useb = BT ? "trans(b)" : "b";
|
||||
# std::string sizea = AT ? "TK, TM" : "TM, TK";
|
||||
# std::string sizeb = BT ? "TN, TK" : "TK, TN";
|
||||
# std::string bca0 = AT ? "newaxis, :" : ":, newaxis";
|
||||
# std::string bca1 = AT ? ":, newaxis" : "newaxis, :";
|
||||
# std::string bcb0 = BT ? ":, newaxis" : "newaxis, :";
|
||||
# std::string bcb1 = BT ? "newaxis, :" : ":, newaxis";
|
||||
# std::string lda0 = AT ? "*lda" : "";
|
||||
# std::string lda1 = AT ? "" : "*lda";
|
||||
# std::string ldb0 = BT ? "" : "*ldb";
|
||||
# std::string ldb1 = BT ? "*ldb" : "" ;
|
||||
# std::string result =
|
||||
# R"(
|
||||
# const tunable int TM = {)" + std::to_string(BS_) + R"(};
|
||||
# const tunable int TN = {)" + std::to_string(BS_) + R"(};
|
||||
# const tunable int TK = {32};
|
||||
# void bsdot(restrict read_only align(16) )" + ab_ty_ + R"( *A,
|
||||
# restrict read_only align(16) )" + ab_ty_ + R"( *B,
|
||||
# )" + c_ty_ + R"(* C,
|
||||
# int lda, int ldb, int ldc,
|
||||
# int N, int* lut,
|
||||
# int* locks, int nlocks) {
|
||||
# int ridx = get_range_id(0);
|
||||
# float acc[TM, TN] = 0;
|
||||
# int rka[TK] = 0 ... TK;
|
||||
# int rkb[TK] = 0 ... TK;
|
||||
# int *header = lut + ridx * 2;
|
||||
# int offx = *(header + 0);
|
||||
# int offy = *(header + 1);
|
||||
# int rxa[TM] = offx*TM + (0 ... TM);
|
||||
# int ryb[TN] = offy*TN + (0 ... TN);
|
||||
# bool checka[TK, TM] = (rka < N)[:, newaxis];
|
||||
# bool checkb[TK, TN] = (rkb < N)[:, newaxis];
|
||||
# int offa[)" + sizea + "] = rxa[" + bca0 + "]" + lda0 + " + rka[" + bca1 + "]" + lda1 + R"(;
|
||||
# int offb[)" + sizeb + "] = ryb[" + bcb0 + "]" + ldb0 + " + rkb[" + bcb1 + "]" + ldb1 + R"(;
|
||||
# )" + ab_ty_ + " * pa[" + sizea + R"(] = A + offa;
|
||||
# )" + ab_ty_ + " * pb[" + sizeb + R"(] = B + offb;
|
||||
# )" + ab_ty_ + " a[" + sizea + R"(] = checka ? *pa : 0;
|
||||
# )" + ab_ty_ + " b[" + sizeb + R"(] = checkb ? *pb : 0;
|
||||
# for(int k = N; k > 0; k = k - TK) {
|
||||
# acc = dot()" + usea + ", " + useb + R"(, acc);
|
||||
# pa = pa + TK)" + lda1 + R"(;
|
||||
# pb = pb + TK)" + ldb1 + R"(;
|
||||
# a = checka ? *pa : 0;
|
||||
# b = checkb ? *pb : 0;
|
||||
# }
|
||||
# int rxc[TM] = (0 ... TM);
|
||||
# int ryc[TN] = (0 ... TN);
|
||||
# )" + c_ty_ + R"( c[TM, TN] = acc;
|
||||
# )" + c_ty_ + R"(* pc[TM, TN] = C + rxc[:, newaxis]*TM + ryc[newaxis, :] + ridx*TM*TN;
|
||||
# *pc = c;
|
||||
# })";
|
@@ -3,15 +3,16 @@ import triton
|
||||
import numpy as np
|
||||
|
||||
src = """
|
||||
// Templates for accessing A
|
||||
#if AT == 1
|
||||
#define USEA ^a
|
||||
#define USE_A ^a
|
||||
#define STRIDE_AK lda
|
||||
#define STRIDE_AM 1
|
||||
#define BROADCAST_AK :, newaxis
|
||||
#define BROADCAST_AM newaxis, :
|
||||
#define SHAPE_A TK, TM
|
||||
#else
|
||||
#define USEA a
|
||||
#define USE_A a
|
||||
#define STRIDE_AK 1
|
||||
#define STRIDE_AM lda
|
||||
#define BROADCAST_AK newaxis, :
|
||||
@@ -19,15 +20,16 @@ src = """
|
||||
#define SHAPE_A TM, TK
|
||||
#endif
|
||||
|
||||
// Templates for accessing B
|
||||
#if BT == 1
|
||||
#define USEB ^b
|
||||
#define USE_B ^b
|
||||
#define STRIDE_BK 1
|
||||
#define STRIDE_BN ldb
|
||||
#define BROADCAST_BK newaxis, :
|
||||
#define BROADCAST_BN :, newaxis
|
||||
#define SHAPE_B TN, TK
|
||||
#else
|
||||
#define USEB b
|
||||
#define USE_B b
|
||||
#define STRIDE_BK ldb
|
||||
#define STRIDE_BN 1
|
||||
#define BROADCAST_BK :, newaxis
|
||||
@@ -56,7 +58,7 @@ void dot(TYPE * A, TYPE * B, TYPE * C,
|
||||
TYPE b[SHAPE_B] = *pb;
|
||||
// reduction loop
|
||||
for(int k = K; k > 0; k-= TK){
|
||||
c += USEA @ USEB;
|
||||
c += USE_A @ USE_B;
|
||||
pa = pa + TK * STRIDE_AK;
|
||||
pb = pb + TK * STRIDE_BK;
|
||||
a = *pa;
|
||||
@@ -71,57 +73,54 @@ void dot(TYPE * A, TYPE * B, TYPE * C,
|
||||
}
|
||||
"""
|
||||
|
||||
def cdiv(a, b):
|
||||
return -(-a // b)
|
||||
|
||||
class dot_op:
|
||||
|
||||
def __init__(self, trans_a = False, trans_b = False):
|
||||
def __init__(self, transpose_a = False, transpose_b = False):
|
||||
self.dot = triton.op(src, ['C'])
|
||||
self.trans_a = trans_a
|
||||
self.trans_b = trans_b
|
||||
self.transpose_a = transpose_a
|
||||
self.transpose_b = transpose_b
|
||||
|
||||
def __call__(self, a, b):
|
||||
# extract shapes
|
||||
shape_a = triton.shape(a)
|
||||
shape_b = triton.shape(b)
|
||||
M = shape_a[0]
|
||||
Ka = shape_a[1]
|
||||
Kb = shape_b[0]
|
||||
N = shape_b[1]
|
||||
M, Ka = shape_a[0], shape_a[1]
|
||||
Kb, N = shape_b[0], shape_b[1]
|
||||
# transpose shapes
|
||||
if self.trans_a:
|
||||
if self.transpose_a:
|
||||
M, Ka = Ka, M
|
||||
if self.trans_b:
|
||||
if self.transpose_b:
|
||||
Kb, N = N, Kb
|
||||
K = Ka
|
||||
# contiguous dimensions
|
||||
lda = Ka
|
||||
ldb = N
|
||||
lda = M if self.transpose_a else Ka
|
||||
ldb = Kb if self.transpose_b else N
|
||||
ldc = N
|
||||
# allocate output
|
||||
c = triton.empty([M, N])
|
||||
return self.dot(a, b, c, M, N, K, lda, ldb, ldc,
|
||||
lambda opt: [cdiv(M, opt.d('TM')), cdiv(N, opt.d('TN'))],
|
||||
AT = self.trans_a, BT = self.trans_b, TYPE = tf.float16,
|
||||
TM = [128], TN = [ 128], TK = [32])
|
||||
# compute
|
||||
return self.dot(a, b, c, M, N, Ka, lda, ldb, ldc,
|
||||
lambda opt: [triton.cdiv(M, opt.d('TM')), triton.cdiv(N, opt.d('TN'))],
|
||||
AT = self.transpose_a, BT = self.transpose_b, TYPE = tf.float16,
|
||||
TM = [128], TN = [128], TK = [32])
|
||||
|
||||
|
||||
def dot(a, b, trans_a = False, trans_b = False):
|
||||
if (trans_a, trans_b) not in dot.ops:
|
||||
dot.ops[trans_a, trans_b] = dot_op(trans_a, trans_b)
|
||||
return dot.ops[trans_a, trans_b](a, b)
|
||||
def dot(a, b, transpose_a = False, transpose_b = False):
|
||||
if (transpose_a, transpose_b) not in dot.ops:
|
||||
dot.ops[transpose_a, transpose_b] = dot_op(transpose_a, transpose_b)
|
||||
return dot.ops[transpose_a, transpose_b](a, b)
|
||||
dot.ops = dict()
|
||||
|
||||
# @triton.register_gradient(dot_op)
|
||||
# def _dot_grad(op, dy):
|
||||
# a = op.inputs[0]
|
||||
# b = op.inputs[1]
|
||||
# return [dot_tn(dy, b), dot_nt(a, dy), None, None, None, None, None, None, None]
|
||||
@tf.RegisterGradient("Dot")
|
||||
def _dot_grad(op, dy):
|
||||
a = op.inputs[0]
|
||||
b = op.inputs[1]
|
||||
return [dot_tn(dy, b), dot_nt(a, dy), None, None, None, None, None, None, None]
|
||||
|
||||
def run_dot():
|
||||
M, N, K = 128, 128, 128
|
||||
a = tf.placeholder(tf.float16, shape=[M, K])
|
||||
b = tf.placeholder(tf.float16, shape=[N, K])
|
||||
c = dot(a, b, trans_a = False, trans_b = True)
|
||||
c = dot(a, b, transpose_a = False, transpose_b = False)
|
||||
# Reference
|
||||
ha = np.random.rand(M, K).astype(np.float16)
|
||||
hb = np.random.rand(K, N).astype(np.float16)
|
||||
@@ -131,7 +130,8 @@ def run_dot():
|
||||
result = sess.run([c], feed_dict = {a: ha,
|
||||
b: hb})[0]
|
||||
# Test
|
||||
hresult = np.dot(ha, hb.T)
|
||||
print(result)
|
||||
hresult = np.dot(ha, hb)
|
||||
dif = np.abs(result - hresult)
|
||||
np.savetxt('dif.dat', dif, '%2.4f')
|
||||
print("dif: %f" % np.max(dif))
|
||||
|
Reference in New Issue
Block a user